

Lecture Notes in Computer Science 5320
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Barbara Paech Craig Martell (Eds.)

Innovations
for RequirementsAnalysis

From Stakeholders’Needs to Formal Designs

14th Monterey Workshop 2007
Monterey, CA, USA, September 10-13, 2007
Revised Selected Papers

13

Volume Editors

Barbara Paech
University of Heidelberg
Im Neuenheimer Feld 326
69120, Heidelberg, Germany
E-mail: paech@informatik.uni-heidelberg.de

Craig Martell
Naval Postgraduate School
Department of Computer Science
1411 Cunningham Road
Monterey, CA 93943, USA
E-mail: cmartell@nps.edu

Library of Congress Control Number: 2008940145

CR Subject Classification (1998): D.2.1, I.2.7, H.5.2, I.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-89777-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89777-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12573790 06/3180 5 4 3 2 1 0

Preface

We are pleased to present the proceedings of the 14th Monterey Workshop, which
took place September 10–13, 2007 in Monterey, CA, USA. In this preface, we give
the reader an overview of what took place at the workshop and introduce the
contributions in this Lecture Notes in Computer Science volume. A complete
introduction to the theme of the workshop, as well as to the history of the
Monterey Workshop series, can be found in Luqi and Kordon’s “Advances in
Requirements Engineering: Bridging the Gap between Stakeholders’ Needs and
Formal Designs” in this volume. This paper also contains the case study that
many participants used as a problem to frame their analyses, and a summary of
the workshop’s results.

The workshop consisted of three keynote talks, three panels, presentations of
peer-reviewed papers, as well as presentations of various position papers by the
participants.

The keynote speakers at this year’s workshop were Daniel Berry, Aravind
Joshi, and Lori Clarke. Each of their talks was used to set the tone for the pre-
sentations and discussions for that particular day. Daniel Berry presented an
overview of the needs and challenges of natural language processing in require-
ments engineering, with a special focus on ambiguity in his talk “Ambiguity
in Natural Language Requirements.” Aravind Joshi provided an overview of
current natural language processing research in discourse analysis in the talk
“Some Recent Developments in Natural Language Processing.” Finally, Lori
Clarke showed how to combine formal requirements specification with natural
language processing to cope with the complex domain of medical information
processes in “Getting the Details Right.” We are grateful to each of them for
their time and energy. For extended abstracts of the talks, please see “Part I:
Abstracts” in this volume.

The panels examined a wide range of topics related to natural language pro-
cessing and requirements engineering. The active discussions that took place at
these panels stimulated many ideas for both the workshop and for the papers
presented here. The titles and participants of the panels were:

1. Advances in Requirements Engineering

Chairs: Christine Choppy (University of Paris 13), Sol Shatz (University of
Illinois at Chicago)
Panelists: JeffBesser (SPAWAR), John Gibson (Naval Postgraduate School),
Douglas Lange (SPAWAR), Julio Leite (PUC-Rio), and Steve Yau (Arizona
State University).
Date: September 11, 2007

VI Preface

2. State of theArt in Natural Language Processing and Requirements Engineering

Chairs: Michel Lemoine (ONERA) and Kane Kim (University of California,
Irvine)
Panelists: Swappan Bhattacharya (National Institute of Technology,
Durgapur), Nabendu Chaiki (University of Calcutta), Alan Rieffer (DISA),
Chen-Yu (Phillip) Sheu (University of California, Irvine), and Oleg Sokolsky
(University of Pennsylvania).
Date: September 12, 2007

3. Pro’s and Con’s of Proposed Approaches for Requirements Engineering

Chairs: Doris Carver (Louisiana State University) and Daniel Cooke (Texas
Tech University)
Panelists: Mikhail Auguston (Naval Postgraduate School), Valdis Berzins
(Naval Postgraduate School), David Hislop (U.S. Army Research Office,
Retired), Mohammad Ketabchi (Savvion), Peter Musial (VeroModo, Inc.),
William Roof (IntelliDOT Corporation), Nelson Rushton (Texas Tech Uni-
versity), John Salasin (National Institute of Standards).
Date: September 13, 2007

Finally, of the papers presented at the workshop, the authors of 11 were
invited to revise and expand their papers. These make up “Part II: Papers” in
this volume. The papers fell into two broad categories:

1. Innovative requirements engineering techniques
2. Innovative applications of natural language processing techniques

1 Innovative Requirements Engineering Techniques

The six papers in this group present several challenges for requirements engi-
neering and discuss innovative solution ideas.

In “Could an Agile Requirements Analysis Be Automated?—Lessons Learned
from the Successful Overhauling of an Industrial Automation System,” Thomas
Aschauer, Gerd Dauenhauer, Patricia Derler, Wolfgang Pree, and Christoph
Steindl describe a recent successful requirements analysis of a complex industrial
automation system that combined a talented expert, who was willing to dig into
the domain details, with a committed customer and a motivated team. Mar-
tin Feather, in “Defect Detection and Prevention,” presents the DDP process
and tool which supports the exploration of and decision-making for complex re-
quirements documents. His abstract (to be found in “Part I”) characterizes and
summarizes the most important literature on this approach. In “Model-Driven
Prototyping-Based Requirements Elicitation,” Jicheng Fu, Farokh Bastani, and
I-Ling Yen present a requirements elicitation approach that is based on model-
driven prototyping. They apply a “rapid program synthesis” approach to speed
up prototype development. Michael Goedicke and Thomas Herrmann, in “A
Case for ViewPoints and Documents,” consider how various stakeholders pro-
vide their requirements from different points of view, and how to deal with the

Preface VII

fact that these various points of view can often lead to vague and inconsis-
tent requirements specifications. Allyson Hoss and Doris Carver, in “Towards
Combining Ontologies and Model Weaving for the Evolution of Requirements
Models,” address the challenges of software change that result from adding new
requirements. They do this by combining ontologies and model weaving to assist
in software evolution. Finally, in “Reducing Ambiguities in Requirements Spec-
ifications via Automatically Created Object-Oriented Models,” Daniel Popescu,
Spencer Rugaber, Nenad Medvidovic, and Daniel Berry describe a three-step,
semi-automatic method for identifying inconsistencies and ambiguities in re-
quirement specifications. Their method automatically generates a diagram of
the objects, classes and methods of the specified system for a human to review.

2 Innovative Applications of Natural-Language
Processing Techniques

The five papers in this section all deal, in some way, with using natural language
processing to help with the requirements engineering process.

Valdis Berzins, Craig Martell, Luqi, and Paige Adams, in “Innovations in
Natural Language Document Processing for Requirements Engineering,” evalu-
ate the potential contributions of natural language processing to requirements
engineering and suggest some improvements to natural language processing sys-
tems that may be useful in this context. Nikhil Dinesh, Aravind Joshi, Insup
Lee, and Oleg Sokolsky, in “Logic-Based Regulatory Conformance Checking,”
describe an approach to formally assess whether an organization conforms to
a body of regulation. This is done via a logic in which statements can for-
mally refer to and reason about other statements. They present preliminary
work on using natural language processing to assist in the translation of regula-
tory sentences into this logic. In “On the Identification of Goals in Stakeholders
Dialogs,” Leonid Kof shows that the often unstated, and sometimes unknown,
goals of stakeholders can lead to contradictory requirements, and that making
these goals explicit as early in the process as possible facilitates the resolution
of these contradictions. He describes how these goals can be derived by system-
atic analysis of stakeholders’ dialogs. Douglas Lange, in “Text Classification and
Machine Learning Support for Requirements Analysis Using Blogs,” describes
how text classification and machine learning technologies are being use to sup-
port management requirements in military command centers. He then explores
how these technologies might be used in a requirements analysis environment.
Finally, in “Profiling and Tracing Stakeholder Needs,” Pete Sawyer, Ricardo
Gacitua, and Andrew Stone show how shallow natural language techniques can
be used to assist in the analysis of stakeholder-elicited information and help
with the synthesis of the user requirements. These same techniques can be used
for subsequent management of requirements and in identifying unprovenanced
requirements.

It has been a pleasure and an honor to serve as Program Committee Chairs for
the 2007 Monterey Workshop. First of all, we would like to thank the Workshop

VIII Preface

Chairs, Luqi and Fabrice Kordon, for their continuous support and advice during
the workshop and the preparation of these proceedings. Secondly, we would like
to thank the members of the Program Committee, who acted as anonymous
reviewers and provided valuable feedback to the authors. We are also grateful
to the authors for their active participation in the workshop and their timely
responses during the preparation of the proceedings. Doris Keidel-Müller was a
great help in reviewing the layout of the papers.

Finally, none of this would have worked as smoothly as it did without the
continuous support of Willi Springer. Many thanks!

September 2008 Barbara Paech
Craig Martell

Organization

The Monterey 2007 Workshop was run by an Organizing Committee of two
Workshop Chairs and a Technical Program Committee.

Workshop Chairs

Luqi Naval Postgraduate School, Monterey, USA
Fabrice Kordon Pierre & Marie Curie University, Paris, France

Technical Program Committee

Barbara Paech University of Heidelberg, Germany
Craig Martell Naval Postgraduate School, Monterey, USA

Program Committee

Daniel M. Berry University Waterloo, Canada
Christine Choppy University Paris XIII, France
Steven Clark Oxford University, UK
Lori A. Clarke University of Massachusetts, USA
Rance Cleveland University of Maryland, USA
Vincenzo Gervasi University of Pisa, Italy
Aravind Joshi University of Pennsylvania, USA
Kane Kim University of California, Irvine, USA
Leonid Kof Technical University of Munich, Germany
Fabrice Kordon Pierre & Marie Curie University, Paris, France
Bernd Krämer FernUniversität Hagen, Germany
Mitch Marcus University of Pennsylvania, USA
Bashar Nuseibeh The Open University, UK
Manuel Rodriguez National Research Council, USA
Sol Shatz University of Illinois at Chicago, USA
Phillip Sheu University of California, Irvine, USA

Table of Contents

Part I: Abstracts

Ambiguity in Natural Language Requirements Documents
(Keynote) . 1

Daniel M. Berry

Towards Discourse Meaning (Keynote) . 8
Aravind K. Joshi

Getting the Details Right (Keynote) . 10
Lori A. Clarke

Defect Detection and Prevention (DDP) . 13
Martin S. Feather

Part II: Papers

Advances in Requirements Engineering: Bridging the Gap between
Stakeholders’ Needs and Formal Designs . 15

Luqi and Fabrice Kordon

Innovative Requirements Engineering Techniques

Could an Agile Requirements Analysis Be Automated?—Lessons
Learned from the Successful Overhauling of an Industrial Automation
System . 25

Thomas Aschauer, Gerd Dauenhauer, Patricia Derler,
Wolfgang Pree, and Christoph Steindl

Model-Driven Prototyping Based Requirements Elicitation 43
Jicheng Fu, Farokh B. Bastani, and I-Ling Yen

A Case for ViewPoints and Documents . 62
Michael Goedicke and Thomas Herrmann

Towards Combining Ontologies and Model Weaving for the Evolution
of Requirements Models . 85

Allyson M. Hoss and Doris L. Carver

XII Table of Contents

Reducing Ambiguities in Requirements Specifications Via Automatically
Created Object-Oriented Models . 103

Daniel Popescu, Spencer Rugaber, Nenad Medvidovic, and
Daniel M. Berry

Innovative Applications of Natural-Language
Processing Techniques

Innovations in Natural Language Document Processing for
Requirements Engineering . 125

Valdis Berzins, Craig Martell, Luqi, and Paige Adams

Logic-Based Regulatory Conformance Checking . 147
Nikhil Dinesh, Aravind K. Joshi, Insup Lee, and Oleg Sokolsky

On the Identification of Goals in Stakeholders’ Dialogs 161
Leonid Kof

Text Classification and Machine Learning Support for Requirements
Analysis Using Blogs . 182

Douglas S. Lange

Profiling and Tracing Stakeholder Needs . 196
Pete Sawyer, Ricardo Gacitua, and Andrew Stone

Author Index . 215

Ambiguity in Natural Language Requirements
Documents

(Extended Abstract)

Daniel M. Berry

Cheriton School of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

dberry@uwaterloo.ca

1 Introduction

This paper is an extended abstract of an invited talk at the workshop that I put together
using material from other talks and from papers that I and colleagues have written. The
purposes of this extended abstract are to summarize the talk and to allow the reader to
find the source materials for the talk directly.

2 Natural Language Is Key in Requirements Engineering

An overwhelming majority of requirements specifications (RSs) are written in natural
language (NL). Virtually every initial conception for a system is written in NL. Virtually
every request for proposal (RFP) is written in NL [1]. However, we all know that NL is
so ambiguous, and so inherently so. No wonder RSs are such messes.

There is an old tradeoff: A RS can be written (1) in a NL or (2) in a mathemat-
ics-based (MB) formal language (FL)1. A NL has the disadvantage that it is inherently
ambiguous, but the advantages (1) that there is always someone who can write with it
and (2) that a RS written in it is always more or less understood by all stakeholders,
albeit somewhat differently by each. A MB FL has the advantage that it is inherently
unambiguous, but the disadvantages (1) that there is not always someone who can write
a RS with it and (2) that a RS written with it is not understood by most stakeholders,
although all that do understand it understand it the same.

A lot of research in requirements engineering (RE) is directed at solving the problem
of ambiguous RSs by (1) convincing people to use MB FLs and (2) addressing the
negatives of MB FLs, by making them more accessible [3], sometimes with the help of
tools [4,5].

However, the reality is that there is no escaping NL RSs. Michael Jackson [6] re-
minds us that “Requirements engineering is where the informal meets the formal.”
In order to write software, ideas, which are inherently informal, have to be converted

1 The term “mathematics-based” is used to distinguish the kinds of FLs I am referring to from
other semi-formal notations, e.g., UML [2], that are often called “formal”.

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 1–7, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 D.M. Berry

somehow to code, which is inherently formal. There needs to be a transition from infor-
mal to formal somewhere along the way from ideas to code. That transition generally
happens the first time ideas are written in an even informal notation, during RE. There-
fore, NLs are inevitable, even if it is only for the initial conception.

Even if one moves immediately to FLs, the inherent ambiguity of the NL initial
conception can strike as the transition is made. What the formalizer understands of
the conception may be different from what the conceiver meant. The phenomenon of
subconscious disambiguation strikes [7].

In subconscious disambiguation, the reader of an ambiguous phrase is not even aware
that there is an interpretation other than the one that came first to his or her mind. The
reader understands an interpretation and thinks that it is the only one. In fact, here is
where it is most important to catch ambiguity: right up front, when the requirements an-
alyst (RA) is getting raw information, be it goals, business rules, or requirements, from
the clients and users. The RA must find each ambiguity and ask the clients and users
what they mean with it. The flip side of subconscious disambiguation is subconscious
ambiguation, the inadvertent introduction of ambiguity during writing by an author who
believes that all readers will understand what he or she was thinking during the writing.

In a semi-formal language such as any of the UML notations, there are two sources
of ambiguity. Ambiguity can still strike when going from the conception to a model,
and the model itself is not uniguous2.

Therefore, there is a group of researchers focusing on solving the problem of am-
biguous RSs by trying to improve our writing, understanding, and processing of NLs.

3 Avoiding or Detecting Ambiguities

There are several approaches to avoiding the ambiguity of NLs:

1. Learn to write less ambiguously, avoiding those constructions that tend to create
ambiguities [8,9,10,11,12].

2. Learn to detect ambiguity either manually [13,14,15], or with the help of tools
[16,17,18,19,20,21,22]. Manual detection is helped by being able to recognize con-
structions that tend to create ambiguities. Someone who is aware of writing pitfalls
can detect ambiguities manually more easily than someone who is not aware of the
pitfalls.

3. Use a restricted NL which is inherently unambiguous [23,24,25] but may not be so
natural.

4 Taxonomy and Defintions of Ambiguity

Figure 1 shows a taxonomy of the kinds of ambiguity that can be encountered in a NL
RS [26]. Most of the tree is based on the traditional ambiguity-and-related-phenome-
na literature [e.g., 27]. The new portions of the tree are based on more recent litera-
ture about software-engineering ambiguity [28,29,30,31] and language-error ambiguity

2 “Uniguous” means “not ambiguous”.

Ambiguity in Natural Language Requirements Documents 3

Requirements A.

Vagueness

Generality

Linguistic A.

Software
Engineering A.

Language
Error A.

Pragmatic A.

Lexical A.

Syntactic A.

Semantic A.

Requirements
Document A.

Application
Domain A.

System
Domain A.

Development
Domain A.

Homonymy

Polysemy

Attachment A.

Coordination A.

Scope A.

Legend:
A. = Ambiguity

Fig. 1. Taxonomy of Ambiguity Types

[9,10]. Berry and Kamsties describe all of these types of ambiguities, including the new
ones, with the help of examples [26].

Probably the most useful of these definitions from RE viewpoint is that of Alan
Davis [31], who has has suggested a test for ambiguity to serve as a definition: “Imag-
ine a sentence that is extracted from an SRS, given to ten people who are asked for
an interpretation. If there is more than one interpretation, then that sentence is proba-
bly ambiguous.” The problem with this test is that, as in software testing, there is no
guarantee that the eleventh person will not find another interpretation. However, this
test does capture the essence of a useful SRS, which is unambiguous for most practical
purposes.

Our experience has identified another category of ambiguity, language error. As with
all other categories, language error may not be mutually exclusive of other categories.
A language-error ambiguity occurs when a grammatical, punctuation, word choice, or
other mistake in using the language of discourse leads to text that is interpreted by a
receiver as having a meaning other than that intended by the sender. The most common
language-error ambiguities are:

– misplacement of only and also, e.g., does the author of
The spam filter only marks the e-mail it considers to be spam.

mean
(1) what is actually written,
(2) The spam filter marks only the e-mail it considers to be spam.,

or
(3) The spam filter only marks only the e-mail it considers to be

spam.;

4 D.M. Berry

– use of all or a plural as a sentence subject, leaving unclear whether the phenomenon
described in the sentence applies to each element of the subject set or to the whole
set, e.g., as would happen with

Students enroll in six courses per term.
and

Students enroll in hundreds of courses per term.
when the reader has no domain knowledge3;

– a pronoun with an unclear referrent, e.g., to what part of the preceding text does the
This in the sentence

This prevents security breaches.
refer?

They are certainly very difficult to detect by someone who is not aware of the problems
[10].

5 Tools

Given any process in SE or RE, we want to build a tool that does the process or at least
helps carry it out, and the ambiguity-in-RE area is no different. However, such tools
a good idea? Back in 1993, Kevin Ryan concluded that for the foreseeable future, AI
approaches to language understanding do not work well enough for RE work [32].

I would add that such a tool would not even be desirable, because it would take the
thinking requirements analyst out of the loop, making it less likely that he or she would
notice serious omissions and questionable, albeit logically okay, requirements. While a
fully understanding NLP tool is out of the realm of possibility or desires, there are ways
that less powerfull NLP tools can help the practicing, thinking requirements analyst find
instances of potentially ambiguous sentences [17,18,19,22,33].

The total amount of information to deal with for any real problem is huge and repeti-
tive. We desire assistance in extracting useful information that is less than what is in the
original document, with 100% recall of the information in the original document and
with 100% precision. That is, from a 500 page RS, we want 5 pages containing all and
only the meaningful information in the 500 page RS.

A tool that looks for instances of a particular ambiguity should have 100% recall,
even at the expense of some imprecision, i.e., false positives; otherwise, the user will
learn not to trust the tool to find every instance, and the user will end up manually
searching the whole document anyway. Thus, a tool should not be based on a NLP
process, e.g., parsing, that inherently has less than 100% recall. Instead, the tool must
be based on a process that has 100% recall by design, e.g. a lexical analyzer looking for
all instances of particular keywords [22]. For example, a tool that finds every instance
of the word only is useful, because it is guaranteed to find every instance even though
the user will suffer some imprecision as he or she examines each instance to decide if
the instance is ambiguous. Actually, a little nonburdensome imprecision may help keep
the human RA engaged, especially if the instances of imprecision are funny examples
of the stupidity of computers and algorithms!

3 I now avoid writing sentences with plural subjects except when talking about properties of a
whole set.

Ambiguity in Natural Language Requirements Documents 5

6 Conclusion

NL is unavoidable in RSs, even if only at the very beginning when you are talking with
the client. Subconscious ambiguation strikes in writing. Subconscious disambiguation
strikes in reading.

Ambiguity abounds in places you never even thought of, e.g., in only, in all, and in
plural.

Any tool must have 100% recall and good summarization at the expense of some
imprecision.

The most important lesson of this talk is that in reality, we are never going to prevent
ambiguity. So we must learn to spot it, not only in polished RSs, but also, and especially,
in goals, business rules, and initial RSs, in whose reading subconscious disambiguation
first strikes. Then we must ask the client what he or she means.

Acknowledgments

Berry’s work was supported in part by NSERC grant NSERC-RGPIN227055-00.

References

1. Mich, L., Franch, M., Inverardi, P.N.: Market research for requirements analysis using lin-
guistic tools. Requirements Engineering Journal 9, 40–56 (2004)

2. Rumbaugh, J., Jacobson, I., Booch, G. (eds.): The Unified Modeling Language Reference
Manual, 2nd edn. Addison-Wesley, Reading (2004)

3. Henninger, K., Kallander, J., Shore, J., Parnas, D.: Software requirements for the A-7E air-
craft. NRL Memorandum Report 3876, Naval Research Laboratory, Washington, DC, USA
(1978)

4. Bharadwaj, R., Heitmeyer, C.: Model checking complete requirements specifications using
abstraction. Automated Software Engineering 6, 37–68 (1999)

5. Heitmeyer, C.L., Kirby, J., Labaw, B.G.: The scr method for formally specifying, verifying,
and validating requirements: Tool support. In: Proceedings of the 19th International Confer-
ence on Software Engineering ICSE 1997, pp. 610–611 (1997)

6. Jackson, M.A.: The role of architecture in requirements engineering. In: Proceedings of the
IEEE International Conference on Requirements Engineering, vol. 241, IEEE Computer So-
ciety, Los Alamitos (1994)

7. Gause, D.C.: User DRIVEN Design—The Luxury that has Become a Necessity, A Workshop
in Full Life-Cycle Requirements Management. ICRE 2000 Tutorial T7, Schaumberg, IL,
USA (2000)

8. Götz, R., Rupp, C.: Regelwerk natürlichsprachliche methode. Technical report, Sophist
(1999), http://www.sophist.de

9. Berry, D., Kamsties, E.: The syntactically dangerous all and plural in specifications. IEEE
Software 22, 55–57 (2005)

10. Berry, D., Kamsties, E., Krieger, M.: From contract drafting to software specification:
Linguistic sources of ambiguity. Technical report, University of Waterloo, Waterloo, ON,
Canada (2003),
http://se.uwaterloo.ca/∼dberry/handbook/ambiguityHandbook.pdf

http://www.sophist.de
http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

6 D.M. Berry

11. Kovitz, B.L.: Practical Software Requirements: A Manual of Content and Style. Manning,
Greenwich, CT, USA (1998)

12. Dupré, L.: Bugs in Writing: A Guide to Debugging Your Prose, 2nd edn. Addison-Wesley,
Reading (1998)

13. Kamsties, E., Berry, D., Paech, B.: Detecting ambiguities in requirements documents us-
ing inspections. In: Lawford, M., Parnas, D.L. (eds.) Proceedings of the First Workshop on
Inspection in Software Engineering (WISE 2001), pp. 68–80 (2001)

14. Kamsties, E.: Surfacing Ambiguity in Natural Language Requirements. PhD thesis, Fach-
bereich Informatik, Universität Kaiserslautern, Kaiserslautern, Germany(2001); also Volume
5 of Ph.D. Theses in Experimental Software Engineering, Fraunhofer IRB Verlag, Stuttgart,
Germany (2001)

15. Denger, C.: High quality requirements specifications for embedded systems through author-
ing rules and language patterns. Master’s thesis, Fachbereich Informatik, Universität Kaisers-
lautern, Kaiserslautern, Germany (2002)

16. Osborne, M., MacNish, C.: Processing natural language software requirement specifications.
In: Proceedings of the International Conference on Requirements Engineering (ICRE 1996),
pp. 229–236 (1996)

17. Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated analysis of requirement specifica-
tions. In: Proceedings of the Nineteenth International Conference on Software Engineering
ICSE 1997, pp. 161–171. ACM Press, New York (1997)

18. Mich, L., Garigliano, R.: Ambiguity measures in requirement engineering. In: Feng, Y.,
Notkin, D., Gaudel, M. (eds.) Proceedings of International Conference on Software—Theory
and Practice ICS 2000. Sixteenth IFIP World Computer Congress, pp. 39–48. Publishing
House of Electronics Industry, Beijing (2000)

19. Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for tools for ambiguity iden-
tification and measurement in natural language requirements specifications. Requirements
Engineering Journal 13, 207–240 (2008)

20. Berry, D.M., Bucchiarone, A., Gnesi, S., Lami, G., Trentanni, G.: A new quality model for
natural language requirements specifications. In: Proceedings of the International Workshop
on Requirements Engineering: Foundation of Software Quality, REFSQ 2006 (2006)

21. Tjong, S., Hartley, M., Berry, D.: Extended disambiguation rules for requirements specifica-
tions. In: Proceedings of Workshop in Requirements Engineering, WER (2007),
http://wer.inf.puc-rio.br/index.html

22. Tjong, S.F.: Avoiding Ambiguity in Requirements Specifications. PhD thesis, Faculty of En-
gineering & Computer Science, University of Nottingham, Malaysia Campus, Semenyih,
Selangor Darul Ehsan, Malaysia (2008)

23. Comer, J.: An experimental natural-language processor for generating data type specifica-
tions. SIGPLAN Notices 18, 25–33 (1983)

24. Enomoto, H., Yonezaki, N., Saeki, M., Chiba, K., Takizuka, T., Yokoi, T.: Natural language
based software development system tell. In: O’Shea, T. (ed.) Advances in Artificial Intelli-
gence, ECAI 1984, pp. 721–731. Elsevier, Amsterdam (1984)

25. Fuchs, N., Schwertel, U., Schwitter, R.: Attempto controlled english (ace) language man-
ual version 3.0. Technical Report No. 99.03, Institut für Informatik der Universität Zürich,
Zürich, Switzerland (1999)

26. Berry, D.M., Kamsties, E.: Ambiguity in requirements specification. In: Leite, J., Doorn, J.
(eds.) Perspectives on Requirements Engineering, pp. 7–44. Kluwer, Boston (2004)

27. Lyons, J.: Semantics I and II. Cambridge University Press, Cambridge (1977)
28. Schneider, G.M., Martin, J., Tsai, W.T.: An experimental study of fault detection in user

requirements documents. ACM Transactions on Software Engineering and Methodology 1,
188–204 (1992)

http://wer.inf.puc-rio.br/index.html

Ambiguity in Natural Language Requirements Documents 7

29. Gause, D.C., Weinberg, G.M.: Exploring Requirements: Quality Before Design. Dorset
House, New York (1989)

30. IEEE: IEEE Recommended Practice for Software Requirements Specifications, ANSI/IEEE
Standard 830-1993. Institute of Electrical and Electronics Engineering, New York, NY, USA
(1993)

31. Davis, A.M.: Software Requirements: Objects, Functions, and States. Prentice-Hall, Upper
Saddle River (1993)

32. Ryan, K.: The role of natural language in requirements engineering. In: Proceedings of the
IEEE International Symposium on Requirements Engineering (ISRE 1993), CA, USA, pp.
240–242. IEEE Computer Society Press, Los Alamitos (1993)

33. Bucchiarone, A., Gnesi, S., Pierini, P.: Quality analysis of NL requirements: An industrial
case study. In: Proceedings of the Thirteenth IEEE International Requirements Engineering
Conference (RE 2005), pp. 390–394 (2005)

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 8–9, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Discourse Meaning

Aravind K. Joshi

Department of Computer and Information Science and Institute for Research in Cognitive
Science

University of Pennsylvania Philadelphia PA USA
joshi@seas.upenn.edu

Abstract. The overall goal is to discuss some issues concerning the dependen-
cies at the discourse level and at the sentence level. However, first I will briefly
describe the Penn Discourse Treebank (PDTB)*, a corpus in which we annotate
the discourse connectives (explicit and implicit) and their arguments together
with "attributions" of the arguments and the relations denoted by the connectives,
and also the senses of the connectives. I will then focus on the complexity of
dependencies in terms of (a) the elements that bear the dependency relations, (b)
graph theoretic properties of these dependencies such as nested and crossed
dependencies, dependencies with shared arguments, and (c) attributions and their
relationship to the dependencies, among others. I will compare these
dependencies with those at the sentence level and discuss some issues that relate
to the transition from the sentence level to the level of "immediate discourse"
and propose some conjectures.

An increasing interest in moving human language technology be-
yond the level of the sentence in text summarization, question answering, and
natural language generation , among others, has recently led to the development
of several resources that are richly annotated at the discourse level. Among
these is the Penn Discourse TreeBank. (PDTB), a large-scale resource of anno-
tated discourse relations and their arguments over the one million word Wall
Street Journal (WSJ) Corpus. Since the sentence-level syntactic annotations of
the Penn Treebank [2] and the predicate-argument annotations of the Propbank
[4] have been done over the same target corpus, the PDTB thus provides a
richer substrate for the development and evaluation of practical algorithms
while supporting the extraction of useful features pertaining to syntax, seman-
tics and discourse all at once. The PDTB is the first to follow a lexically -
grounded approach to the annotation of discourse relations. Discourse relations,
when realized explicitly in the text, are annotated by marking the necessary
lexical items – called discourse connectives - expressing them, thus supporting
their automatic identification.

PDTB adopts a theory-neutral approach to the annotation, making no com-
mitments to what kinds of high-level structures may be created from the low
level annotations of relations and their arguments. This approach has the ap-
peal of allowing the corpus to be useful for researchers working within differ-
ent frameworks. This theory neutrality also permits investigation of the general
question of how structure at the sentence level relates to structure at the dis-
course level, at least that part of the discourse structure that is “parallel” to the
sentence structure [6]. In addition to the argument structure of discourse rela-
tions, the PDTB provides sense labels for each relation following a hierarchi-
cal classification scheme. Annotation of senses highlights the polysemy of

 Towards Discourse Meaning 9

connectives, making the PDTB useful for sense disambiguation tasks [3]. Fi-
nally, the PDTB separately annotates the attribution of each discourse relation
and of each of its two arguments. While attribution is a relation between
agents and abstract objects and thus not a discourse relation, it has been anno-
tated in the PDTB because (a) it is useful for applications such as subjectivity
analysis and multi-perspective QA [5], and (b) it exhibits an interesting and
complex interaction between sentence-level structure and discourse structure
[1]. The first preliminary release of the PDTB was in April 2006. A signifi-
cantly extended version was released as PDTB-2.0 in February 2008, through
the Linguistic Data Consortium (LDC), see http://www.seas.upenn.edu/~pdtb,
for the annotation manual, published papers, tutorial slides and a link to LDC.

References

1. Dinesh, N., Lee, A., Miltsakaki, E., Prasad, R., Joshi, A., Webber, B.: Attribution and the
(non)-alignment of syntactic and discourse arguments of connectives. In: Proceedings of the
ACL Workshop on Frontiers in Corpus Annotation II: Pie in the Sky, Ann Arbor, Michigan
(2005)

2. Marcus, M.P., Santaroni, B., Marcinkiewicz, M.A.: Building a large annotated corpus of
English: The Penn Treebank. Computational Linguistics 19(2), 313–330 (1993)

3. Miltsakaki, E., Dinesh, N., Prasad, R., Joshi, A., Webber, B.: Experiments on sense annota-
tion and sense disambiguation of discourse connectives. In: Proceedings of the Fourth
Workshop on Treebanks and Linguistic Theories (TLT 2005), Barcelona, Spain (2005)

4. Palmer, M., Guildea, D., Kingsbury, P.: The proposition Bank: an annotated corpus of se-
mantic roles. Computational Linguistics 31(1), 71–106 (2005)

5. Prasad, R., Dinesh, N., Lee, A., Joshi, A., Webber, B.: Annotating attribution in the Penn
Discourse Treebank. In: Proceedings of the COLING/ACL Workshop on Sentiment and
Subjectivity in Text, pp. 31–38 (2006)

6. Lee, A., Prasad, R., Joshi, A., Dinesh, N., Webber, B.: Complexity of Dependencies in Dis-
course: Are Dependencies in Discourse More Complex than in Syntax? In: Proceedings of
the 5th International Workshop on Treebanks and Linguistic Theories, Prague, Czech Re-
public (December 2006)

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 10–12, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Getting the Details Right

Lori A. Clarke

Department of Computer Science
University of Massachusetts,

Amherst, Massachuseets USA
clarke@cs.umass.edu

Keywords: Requirements engineering, Property specifications, Finite-state
verification, Medical Safety.

1 Overview

Requirement engineering usually involves repeated refinements of the requirements
specifications, starting with high-level systems goals and constraints, to more precise
and measurable specifications of intended behavior, to detailed, focused statements
that provide the basis for formal reasoning. We refer to these more detailed, mathe-
matically rigorous specifications as property specifications. Although care must be
taken when defining requirements at all these levels of abstraction, it is particularly
difficult to accurately capture all the subtle details associated with property specifica-
tions. To help understand these decisions, the PROPEL (PROPerty ELicitation) sys-
tem [1, 2] provides templates for commonly occurring property patterns [3] in which
the options that need to be considered for each pattern are explicitly represented.
PROPEL currently provides three views of each template and its associated options:
natural language phrases to be selected, a set of hierarchical questions to be answered,
or a finite-state automaton with optional labels, transitions, and accepting states to be
selected. After all the options have been selected for a template, the finite-state
automaton view provides a mathematically precise property specification.

We evaluated PROPEL and this approach to requirement refinement as part of the
UMASS Medical Safety Project. In this project, medical professionals are working
with computer scientists to define and improve life-critical medical processes. In this
work, processes are first modeled in the Little-JIL process definition language[4].
Little-JIL provides a high-level, graphical representation of the process, but is de-
signed to also facilitate modeling important process considerations such as concur-
rency and exception handling. Such complex models need to be carefully validated
before being used for important decision-making.

Using medical guidelines and protocols as the high-level requirements and working
with domain experts, in this case medical professionals, we then refined these require-
ments, first to more detailed natural-language statements and then, using PROPEL, to
precise property specifications. We found that often just doing this mapping helped
uncover errors in the process models or in the higher-level requirements statements.
Frequently important details about the requirements were not captured by the natural
language descriptions, and domain experts had to provide the missing information.

 Getting the Details Right 11

Not surprisingly, it took several iterations of improvements before the process
model and the property specifications were deemed to be reasonable representations.
At this point, FLAVERS [5], a finite-state verification system, was used to determine
if the model of the process was indeed always consistent with each stated property
specification. If an inconsistency was found, counter example traces through the
model were provided that helped reveal the reason for the inconsistencies. By examin-
ing the counter examples, errors were isolated and corrected. Typically, it took many
iterations before a satisfactory process model that adhered to the set of property speci-
fications was actually obtained.

Using this approach for creating detailed process models, for mapping high-level
requirements to collections of property specifications, and then using formal verifica-
tion to determine if the model is consist with these specifications, we were able to find
important and interesting errors. Not surprising, often errors were found in the process
model or in the property specification. Having these two, relatively independent repre-
sentations, allowed us to validate both. We then used these validated artifacts to help
discover errors in the actual processes. When process errors were found, modified
processes were proposed by the medical professionals and then verified be the com-
puter scientists before being implemented in the medical setting. Process modifications
occurred relatively frequently, for example, in response to errors being found, new
technologies being introduced, or new staffing constraints. In contrast, the properties
remained quite stable, with new properties sometime being added to address new con-
cerns that arose. Thus, the collection of properties was invaluable to validating process
modifications or finding process errors. More information about the medical safety
project, the errors that were detected, and the technologies have been reported else-
where [6, 7].

Acknowledgements. Leon J. Osterweil and George Avrunin are major contributors
and co-principal investigators on the UMASS medical safety project. Many other
individuals have also contributed to this project including Dave Brown, Lucinda Cas-
sels, Bin Chen, Stefan Christov, Rachel Cobleigh, Heather Conboy, Elizabeth Hen-
neman, Philip Henneman, Wilson Mertens, and Sandy Wise.

This research was partially supported by the National Science Foundation under
awards CCF-0427071, CCR-0205575, and CCF-0541035, and by the U.S. Depart-
ment of Defense/Army Research Office under awards DAAD19-01-1-0564 and
DAAD19-03-1-0133.

References

1. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: PROPEL: An Approach Support-
ing Property Elucidation. In: 24th International Conference on Software Engineering, Or-
lando, FL, pp. 11–21 (2002)

2. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User Guidance for Creating Precise and Ac-
cessible Property Specifications. In: 14th International Symposium on Foundations of Soft-
ware Engineering, Portland, OR, pp. 208–218 (2006)

3. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for Finite-
State Verification. In: 21st International Conference on Software Engineering, Los Angeles,
CA, pp. 411–420 (1999)

12 L.A. Clarke

4. Cass, A.G., Lerner, B.S., McCall, E.K., Osterweil, L.J., Sutton Jr., S.M., Wise, A.: Little-
JIL/Juliette: A Process Definition Language and Interpreter. In: Proceedings of 22nd Inter-
national Conference on Software Engineering, Limerick, Ireland, pp. 754–758 (2000)

5. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow Analysis for Verifying
Properties of Concurrent Software Systems. ACM Transactions on Software Engineering
and Methodology 13, 359–430 (2004)

6. Chen, B., Avrunin, G.S., Henneman, E.A., Clarke, L.A., Osterweil, L.J., Henneman, P.L.:
Analyzing Medical Processes. In: 30th International Conference on Software Engineering,
Leipzig, Germany (to appear, 2008)

7. Clarke, L.A., Avruinin, G.S., Osterweil, L.J.: Using Software Engineering Technology to
Improve the Quality of Medical Processes. In: 30th International Conference on Software
Engineering, Leipzig, Germany (to appear, 2008)

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 13–14, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Defect Detection and Prevention (DDP)

Martin S. Feather

Jet Propulsion Laboratory, California Institute of Technology
Martin.S.Feather@jpl.nasa.gov

The Defect Detection and Prevention (DDP) decision support process, developed at
JPL, has over the last 8 years been applied to assist in making a variety of spacecraft
decisions. It was originally conceived of as a means to help select and plan hardware
assurance activities (inspections, tests, etc) [1], generally late in the development life-
cycle. However, since then it has been used predominantly in early phase of system
design, when information is scarce, yet many critical decisions are made. Its range of
application has extended to encompass a wide variety of kinds of systems and tech-
nologies. Its predominant role has been to assist in planning the maturation of promis-
ing new technologies to help guide the next steps in their development as they emerge
from the laboratory and seek to mature sufficiently to become acceptable to spacecraft
missions [2]. Although this may at first glance seem far removed from terrestrial
considerations, the factors that come into play in this kind of decision-making are
universal - unclear and inconsistent perceptions about requirements and capabilities,
uncertainty of what are the driving concerns that should be addressed and how best to
address them, challenges of gathering and combining information from experts of
multiple difference disciplines, and inevitably the lack of sufficient resources (money,
time, CPU, power, ...) to do everything one would wish. Other significant applications
of DDP have been as the risk management tool for entire spacecraft projects in their
early phases of development, as an aid to planning portfolios of mission activities
(e.g., [3]), and as a means to help guide R&D decisions (e.g., [4], [5]).

DDP achieves this versatility by providing an information model appropriate to
these kinds of decision making challenges, supported by custom-developed software,
and conducted in facilitated group sessions. Its information model [6] is somewhat akin
to that of Quality Function Deployment (QFD) [7], but with a probabilistic risk basis.
In the world of risk management tools, DDP fills a niche between the qualitative meth-
ods (such as SEI’s Continuous Risk Management approach), and sophisticated quanti-
tative modeling of Probabilistic Risk Assessment. DDP’s custom software is used to
help gather, combine, analyze and present (via several cogent visualizations) [8] the
model information.

Requests for DDP software should be made through https://download.jpl.nasa.gov/

Acknowledgements

The research to develop DDP was carried out at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

14 M.S. Feather

References

1. Cornford, S.L.: Managing Risk as a Resource Using the Defect Detection and Prevention
Process. In: 4th International Conference on Probabilistic Safety and Management, Interna-
tional Association for Probabilistic Safety Assessment and Management, pp. 1609–1614
(1998)

2. Feather, M.S., Cornford, S.L., Hicks, K.A., Johnson, K.R.: Applications of too support for
risk-informed requirements reasoning. Computer Systems Science and Engineering 20(1),
5–17 (2005)

3. Tralli, D.M.: Programmatic Risk Balancing. In: IEEE Aerospace Conference, pp. 2_775–2_784,
Big Sky, MT (2003)

4. Shapiro, A.A., Cornford, S.L., Feather, M.S., Price, G., Gawdiak, Y.O., Ricks, W.R.: Plan-
ning a Large-Scale progression of R&D - a Pilot study in the Aerospace Domain. In: IEEE
Aerospace Conference, Big Sky, MT (2006)

5. Feather, M.S., Uckun, S., Hicks, K.A.: Technology Maturation of Integrated System Health
Management. In: Space Technology and Applications International Forum, pp. 827–828,
Albuquerque, NM,(2008)

6. Feather, M.S., Cornford, S.L.: Quantitative Risk-based Requirements Reasoning. Require-
ments Engineering Journal 8(4), 248–265 (2003)

7. Akao, Y.: Quality Function Deployment. Productivity Press, Cambridge (1990)
8. Feather, M.S., Cornford, S.L., Kiper, J.D., Menzies, T.: Experiences using Visualization

Techniques to Present Requirements, Risks to Them, and Options for Risk Mitigation. In:
International Workshop on Requirements Engineering Visualization, Minneapolis / St. Paul,
MN (2006)

Advances in Requirements Engineering:
Bridging the Gap between Stakeholders’ Needs

and Formal Designs�

Luqi1 and Fabrice Kordon2

1 Naval Postgraduate School, Monterey, California, USA
luqi@nps.edu

2 LIP6, Université Pierre et Marie Curie, Paris, France
Fabrice.Kordon@lip6.fr

Abstract. The lions’s share of the software faults can be traced to re-
quirements and specification errors, so improvements in requirements
engineering can have a large impact on the effectiveness of the overall
system development process. A weak link in the chain is the transition
from the vague and informal needs of system stakeholders to the formal
models that support theoretical analysis and software tools.

This paper explains the context for the 2007 Monterey workshop that
was dedicated to this problem. It provides the case study that partici-
pants were asked to use to illustrate their new methods, and summarizes
the discussion and conclusions of the workshop.

1 Introduction

The Monterey Workshop Series. The objective of the entire series of 15
Monterey workshops since 1992 has been to ”increase the practical impact of
formal methods in computer-aided software development”. The workshop seeks
to improve software practice via application of engineering theory and to en-
courage development of engineering theory that is well suited for this purpose.

Previous workshops have reduced the gap between theoretical and practical
aspects of software/system engineering and have produced a consensus that the
pain of system development could be reduced via computer aid for or automa-
tion of software engineering subtasks based on particular theories and various
kinds of formal models. A common theme has been to hide theoretical results
and complex mathematical ideas inside tools with simple interfaces so that prac-
titioners could use them without the need to fully understand the theory behind
them.

However, there has also been general agreement that the pain of development
cannot be eliminated completely. No matter what you do, somewhere in the
process some people have to think clearly and in detail to reach agreement on
what problems should be solved by the software to be developed. Consequently,

� This work was supported in part by ARO grant 45614CI.

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 15–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 Luqi and F. Kordon

requirements, response to changes, and human aspects of programming have
been identified as potentially fruitful areas for improvement.

Goal of the 2007 Monterey Workshop. The 2007 workshop is focused on
requirements, particularly the process of transforming vague and uncoordinated
needs of individual stakeholders into consistent and well defined requirements
that are suitable for supporting automated and computer aided methods for
engineering subtasks in the development process to follow.

Errors or failures of software-based systems are due to a variety of causes, e.g.
misunderstanding of the real world, erroneous conceptualization, or problems in
representing concepts via the specification or modeling notations. Precise speci-
fication is a key success factor as are communication and the deliberation about
whether the specification is right and whether it has been properly implemented.
Not all stakeholders are familiar with the formal models and notations employed.
Some important requirements might be difficult to quantify and/or express us-
ing formal languages, such as the desire that a system should be user-friendly
or easily maintainable. Better technologies for requirements analysis should thus
be considered.

The majority of requirements are given in natural language, either written or
orally expressed. Other requirements might also be visually expressed in terms
of figures, diagrams, images or even gestures. Artificial-intelligence approaches
might be used to develop prototypes, which can then be re-engineered using
more conventional requirements technologies and safety assurance techniques.
For example, we might employ large amounts of semantic and statistical data,
knowledge bases and theorem provers to infer as much contextual information
as possible from the (vague) textual or visual requirements. Then, some extra
questions could be raised to system/software stakeholders to point out some
fuzzy (or missing) requirements to be refined or some conflicting requirements
to be reconciled.

Accurate automatic analysis of natural language expressions has not yet been
fully achieved, and interdisciplinary methodologies and tools are needed to suc-
cessfully go from natural language to accurate formal specifications. Confor-
mance of a system implementation to its requirements requires dynamic and
efficient communication and iteration among system stakeholders. It is in sup-
porting this process, and not in supplanting it, that innovative approaches to
requirements analysis need to find their proper role.

We want to gain a better understanding of how to deal with natural language as
the vehicle from which we derive system/software requirements, how to use intel-
ligent agents as entities to facilitate semi-automatic requirements-documentation
analysis, and how to build automatic systems to aid in requirements/specifications
elicitation. The overall aim is to exchange ideas for continued research in the in-
tersection of these two areas and to reduce the gap between theory and practice.

A good case study for these issues is to consider how to extract a conceptual
model of the goals and requirements of the software needs discussed in a blog. As
blogs are unstructured natural language, they represent one of the most difficult

Advances in Requirements Engineering 17

challenges for natural language processing. All workshop participants have been
requested to use the case study given in Section 4 of this paper to illustrate their
work.

2 Focus Areas

The three days of the workshop were organized around the following focus areas:

– Recent Advances in Requirements Engineering. Feather compares various ap-
proached to specification and requirements analysis. Aschauer et al explore
success factors for agile requirements analysis. Dinesh et al present an ap-
proach for regulatory conformance checking.

– Human and Linguistic aspects of Requirements Engineering. Kof addresses
identification of goals in stakeholder dialogs. Sawyer examines profiling and
tracing of stakeholder needs. Goedecke explores the relation between view-
points and documents.

– Computer Aid for Requirements Engineering. Fe describes how model-driven
prototyping can help elicit requirements. Popescu et al explain how automat-
ically created OO models can be used to improve the quality of requirements
specifications.

The panels and discussion sections interleaved with the presentations were fo-
cused on integrating, balancing, and assessing the various viewpoints presented
at the workshop to reach a consensus on where we are, how emerging capabili-
ties for natural language processing and computer aided requirements elicitation
methods can contribute, and to identify the best paths forward.

3 Workshop Case Study

All workshop participants were asked to use the case study given below to illus-
trate their work. The participants in the case study discussion are:

– a representative from the Transportation Security Administration (TSA);
– a representative from the Federal Aviation Administration (FAA);
– a representative from Airport screening and security (ASS).

Their discussion on the blog is reproduced hereafter.
The objective of the case study exercise is to answer the following questions

based on the discussion above:

1. What was the topic(s) of the discussion? Have you noticed any contradic-
tions?

2. What are the realistic requirements that FAA suggests for increasing airport
security?

3. What long-terms goals should be set by TSA?
4. What concrete changes should be enforced by Airport screening and security?

18 Luqi and F. Kordon

Who Post
FAA We have to ban on airplane passengers taking liquids on board in order to

increase security following the recent foiled United Kingdom terrorist plot.
We are also working on technologies to screen for chemicals in liquids,
backscatter, you know...

ASS Technologies that could help might work well in a lab, but when you use it
dozens of times daily screening everything from squeeze cheese to Chanel
No. 5 you get False Alarms... so it is not quite ready for deployment!

FAA Come on! Generating false positives helped us stay alive; maybe that
wasn’t a lion that your ancestor saw, but it was better to be safe than
sorry. Anyway, I want you to be more alert - airport screeners routinely
miss guns and knives packed in carry-on luggage.

ASS Well... It’s not easy to move 2 million passengers through U.S. airports
daily. And people can’t remain alert to rare events, so they slip by

TSA We can deal with it. What if you guys take frequent breaks? And also we
are going to artificially impose the image of a weapon onto a normal bag
in the screening system as a test. Then screeners learn it can happen and
must expect it. Eventual solution will be a combination of machine and
human intelligence.

AAS Sounds good though we do take breaks and are getting inspected. We do
not get annual ’surprise’ tests - sometimes we get them everyday; and if
a screener misses too may of these consistently, they are sent to training.

TSA We have yet to take a significant pro-active step in preventing another
attack - everything to this point has been reactive. Somebody hijacks a
plane with box cutters? - Ban box cutters. Somebody hides explosives in
their shoes? - X-ray shoes, and then ban matches. We are well behind!

FAA What do you suggest? Yes, there is an uncertainty. On each dollar that a
potential attacker spends on his plot we had to spend $ 1000 to protect.
There are no easy solutions. We are trying to federalize checkpoints and
to bring in more manpower and technology.

TSA We need to think ahead. For instance, nobody needs a metal object to
bring down an airliner, not even explosives. Practically everything inside
the aircraft is easily flammable, except for the people, so all anyone needs
is oxidizer. Do any of the automated screening devices detect oxidizers?
Are the human screeners trained to recognize them?

FAA Good point. Airlines need to take the lead on aviation security. The cor-
porate response was to market cheap tickets and pass security off on the
federal government. Have a trained group of security officers on every
flight. Retrain flight attendants as security officers. Forget about passing
around the soda and peanuts - that should be secondary.

AAS Sir, a lot of airlines are not doing well and are on the Government assis-
tance. Prices go up, baggage get mishandled. There are constant changes
in screening rules – liquids/no liquids/3-1-1 rule. Anything radical will
not only cost a lot of money but also deter people. I mean an economic
threat is also a threat.

TSA I think that enforcing consistency in our regulations and especially in
their application will be a good thing to do. Another thing is that even if
an airline goes bankrupt there are still advantages: bankruptcy makes it
easier to rearrange company assets and to renegotiate vendor and supplier
contracts.

FAA Ok, we had very productive discussion. Now back to work. I want you
to come up with some concrete measures based on what we have been
talking about. You should finally generate some ROI for that money we
have been spending. And do not forget, the examples listed above are not
all-inclusive.

Advances in Requirements Engineering 19

4 Synthesis of Workshop Discussions

The main points that emerged from workshop discussions are the following:

Getting Unambiguous Specifications. A major focus of the workshop was
the transition from informal ideas to formal models, and the associated prob-
lems of resolving ambiguities. This transition is an inescapable part of software
development because stakeholder needs, which are inherently informal, must be
transformed into software, which is inherently formal. Synthesizing an unam-
biguous model of stakeholder needs is a major part of requirements engineering;
another major part is ensuring that this model is accurate.

It was recognized that natural language is an inescapable part of the process,
because most of the communication with stakeholders is carried out in natural
language. There has been a great deal of past work on requirements engineer-
ing that has advocated the use of formal models to represent requirements by
creating notations and tools to make such models accessible to a wider audience.

However, this does not avoid the need for resolving ambiguities. Despite all the
past advances, it is still the case that most stake holders are unable to write formal
models. These models are constructed by specially trained experts, who construct
models on behalf of the stakeholders based on their natural language statements.
These experts are at risk of subconscious disambiguation; they construct formal
models based on their understanding of stakeholders’ statements even though their
interpretations could be different than what the stakeholders meant. The model
builder may not even be aware that there is an interpretation of the natural lan-
guage other than the first one that comes to mind and was understood [2].

A similar problem applies to approaches that use unambiguous subsets of
natural language. These subsets are made unambiguous by rules and restrictions
that admit only one interpretation. Subconscious disambiguation in this case can
have the reader relying on an understanding and interpretation of the constrained
natural language that differs from the one chosen by the rules and used by all
of the software tools based on those rules.

The workshop recognized that it is not possible to write unambiguous natural
language, and that it is useful to reduce the amount of ambiguity where possi-
ble. Some details can be found in [2,12]. Other suggested approaches included
using fault tolerance strategies to engineer systems that can tolerate ambiguity
and to use examples to clarify which interpretation is intended. Examples could
be supplied by stakeholders or generated from formal models and checked by
stakeholders.

Ambiguity Management. Sometimes ambiguity may be used to deliberately
express disagreements among different stakeholders. In such cases, questions
must be raised to get the correct interpretation. The clients may not know the
answer, so negotiations or additional information may be needed to get a reliable
resolution.

The workshop concluded that natural language processing and aid for resolv-
ing ambiguities would be useful, but should be used to support current processes
rather than replacing them. Reasons for this include (1) that there is a lot more

20 Luqi and F. Kordon

to requirements engineering than just translating stakeholder statements into
formal models and (2) that current accuracies of automated natural language
processing are less than 100%.

Requirement Engineering. Requirements engineering tasks include finding
implied but unstated requirements, detecting conflicts between needs of different
stakeholders, and resolving such conflicts. Communication gets increasingly dif-
ficult as systems scale up. Stakeholder are typically comprised of diverse groups,
each of which has its own specialized domain knowledge, jargon, and unique tacit
understanding of the problem. Bridging the gaps becomes key to success as com-
plexity increases because each group typically has only a partial understanding
of the issues, constraints, possible solutions and cost implications [14,9].

Accuracy of the requirements engineering process is crucial. Requirements
engineering is a critical part of the system development process because require-
ment errors cost roughly 100 times less to correct during requirement engineering
than after system delivery [4]. This imposes extreme constraints on the accu-
racy of natural language processing and that we might use to derive system
requirements. However, natural language processing accuracies are currently in
the 90%-92% range, at best [3]. Therefore natural language processing must be
augmented with other methods for removing residual errors, and accuracy must
be greatly improved if it is to be seriously used for Requirements engineering.

Towards Computed Aided Requirement Engineering. To be useful, tools
must find all possible instances of a problem, and it is acceptable to have some
false positives in the warnings and error reports, otherwise engineers will not be
able to afford to rely on the results of the tool. Since the delivered system is
unlikely to be any better than the requirements, accuracy of the requirements
has great importance. Existing manual processes for deriving requirements form
informal stakeholder statements therefore incorporate a variety of checking pro-
cedures that include reviews, storyboarding, simulation and prototype demon-
stration, dependency tracing, consistency checking, and many others. Natural
language processing of requirements engineering must be integrated with such
checking procedures to achieve needed accuracy.

Accuracy of natural language processing can be improved by specializing the
problem to the context of requirements engineering and using the extra informa-
tion provided by that context. For details, see [3]. Developing tools and methods
for augmenting and supporting current requirements engineering processes with
tools that incorporate natural language processing appears to be a promising
realistic goal, if it is coupled with integration into error checking and correction
processes already used in requirements engineering. Total automation of require-
ments engineering does not appear to be feasible in the foreseeable future, in view
of the gap between promises and actual results of AI research of the past several
decades. Natural language processing is highly context dependent, both on the
subject domain and the questions being asked. In the context of requirements
engineering there are an effectively unlimited number of domains.

Given the huge size of requirements documents for real projects, even imper-
fect heuristic methods that can improve confidence that something important

Advances in Requirements Engineering 21

was not overlooked. Some problems that have been explored in detail include
identifying goals in stakeholder dialogs [10], support for dealing with require-
ments changes [1,8], using shallow natural language processing techniques to aid
in synthesizing requirements [13,11], and requirements validation [6].

To automate the process it is useful to rely on representations and methods
for detecting conflicts or unfounded constraints in the requirements (this can
be seen as a second focus that emerged from the workshop). Methods based
on logic were proposed for checking conformance of requirements to regulations
[5]. A notation and method for analyzing conflicts, ambiguities, and imprecision
in requirements based on viewpoints of different stakeholders were explored [7].
These directions are promising because they attempt automation of the processes
that cannot be effectively done manually when requirements are very complex.
The reason for this is that the analyses are non-local in nature and can depend
on interactions between wildly separated parts of the requirements. People are
effective at analyzing small bits of text in depth, but not at finding widely sep-
arated connections in very long documents. Progress in these directions should
be possible in the not too distant future.

Synthesis of Discussions during the Workshop. Traditionally, Monterey
Workshops leave a large space to discussion between participants. In 2007, the
workshop discussions resulted in the following conclusions:

– End-to-end integration is necessary for all of the component technologies to
realize their possible contributions to real software development processes.
To achieve this, a necessary step is to clarify the interface between natural
language processing and requirements engineering. [3] contains a step toward
this goal.

– Domain specific approaches can help natural language processing perform
better. Context information such as the goals of the speaker, the speaker’s
area of expertise, and expected output of the process can narrow the search
space for disambiguation and condition the probabilities governing the most
likely interpretations.

– Natural language processing for requirements engineering needs to handle
domain specific jargon and acronyms.

– Generating accurate natural language from formal models is easier and more
accurate than the reverse process, and can be very helpful for finding errors.
However problems with subconscious disambiguation [2] are still present.

– Generating summary descriptions is useful for finding defects, especially er-
rors of omission.

– To have practical impact, automatic methods contributing to the transfor-
mation from natural language to formal requirement models have to be faster
and more accurate than current manual methods.

5 Conclusion

Overarching goals of the rest of the series of Monterey Workshops are to cre-
ate a shared community-wide articulation of the system/software engineering

22 Luqi and F. Kordon

enablement challenge, reach consensus on the set of intellectual problems to be
solved, and create a common vision of how the solutions to these problems will
fit together in a comprehensive engineering environment.

The Monterey Workshop has been able to bring the brightest minds in Soft-
ware Engineering together with the purpose of increasing the practical impact
of formal methods for software development so that these potential benefits can
be realized in actual practice. In the workshop, attendees and organizers work to
clarify what good formal methods are, what are their feasible capabilities, and
what are their limits. Overall, the workshop strives to reduce the gap between
theory and practice. This has been a slow and difficult process because theoreti-
cians and practitioners do not normally talk to each other, and did not at the
beginning of the workshops. This gap has been gradually reduced. In particu-
lar, researchers have focused on problems that are relevant to the practitioners,
and have helped demonstrate how recent theory can be applied to solve current
problems in software development practice.

Here are the workshops:

N Year Theme Location Chairs
0 1992 Concurrent and Real-Time Systems Monterey Luqi, Gunter
1 1993 Software Slicing, Merging and Integra-

tion
Monterey Berzins

2 1994 Software Evolution Monterey Luqi, Brockett
3 1995 Specification-Based Software Architec-

ture
Monterey Luqi

4 1996 Computer-Aided Prototyping Monterey Luqi
5 1997 Requirements Targeting Software and

Systems Engineering
Bernried Broy, Luqi

6 1998 Engineering Automation for Computer
Based-Systems

Carmel Luqi, Broy

7 2000 Modeling Software System Structures
in a Fastly Moving Scenario

Santa
Margherita
Ligure

Astesiano, Broy, Luqi

8 2001 Engineering Automation for Software
Intensive System Integration

Monterey Luqi, Broy

9 2002 Radical Innovations of Software and
Systems Engineering in the Future

Venice Wirsing

10 2003 Embedded Systems Chicago Shatz
11 2004 Compatibility and Integration of Soft-

ware Engineering Tools
Vienna Manna, Henzinger

12 2005 Networked Systems Irvine Sztipanovits, Kordon
13 2006 Composition of Embedded Systems Paris Kordon, Sokolsky
14 2007 Innovations for Requirements Analysis Monterey Luqi, Kordon
15 2008 Foundations in Computer Software Budapest Dobrowiecki,

Sztipanovits

Advances in Requirements Engineering 23

The 2007 workshop highlighted some differences between generic natural lan-
guage processing and natural language processing in the context of requirements
engineering. Researchers from both communities learned about relevant recent
advances from each of the communities and became more aware of the open
problems in the gaps between the two fields. It is becoming clear that many
software problems originate in the gap between the fuzzy needs of the human
stakeholders and the formal models used in software design. This are is gaining
increasing attention from the scientific community.

The Monterey workshops have helped focus the attention of the community
on many productive directions. For example, since the 1995 workshop identified
specification-based architectures as a key means to achieve system flexibility
and reuse, there has been a great deal of activity in these areas. A great deal of
research has produced architecture description languages and associated analysis
methods, there have been commercial advances on ”plug and play” hardware and
software, adoption of service-based architectures in electronic commerce, and a
move toward open architectures in government and defense systems. Currently
the practical impact of software architecture is no longer in doubt

We look forward to comparable advances in computer aided requirements
analysis in the decade to come.

Acknowledgments

The Monterey Workshops were initiated under the support of Dr. Hislop at ARO
and many others at NSF, ONR, AFOSR, and DARPA. We would like to thank
DARPA and NSF for their financial support of the 2007 workshop, NRC for sup-
port of two talented postdoctoral fellows Dr. Rodriguez and Dr. Ivanchenko who
contributed to the proposal, workshop case study and material for the web page,
the program committee chairs Barbara Paech and Craig Martell and committee
members for their efforts on reviewing papers and putting together the workshop
program, and the local chair Craig Martell for handling endless practical details.
All of the workshop participants contributed to the ideas summarized in this
paper.

References

1. Aschauer, T., Dauenhauer, G., Derler, P., Pree, W., Steindl, C.: Could an Agile
Requirements Analysis be Automated? In: Paech, B., Martell, C. (eds.) Monterey
Workshop 2007. LNCS, vol. 5320, pp. 25–42. Springer, Heidelberg (2008)

2. Berry, D.: Ambiguity in Natural Language Requirements Documents: Extended
Abstract. In: Paech, B., Martell, C. (eds.) Monterey Workshop 2007. LNCS,
vol. 5320, pp. 1–7. Springer, Heidelberg (2008)

3. Berzins, V., Martell, C., Luqi, Adams, P.: Innovations in Natural Language Doc-
ument Processing for Requirements Engineering. In: Paech, B., Martell, C. (eds.)
Monterey Workshop 2007. LNCS, vol. 5320, pp. 125–146. Springer, Heidelberg
(2008)

24 Luqi and F. Kordon

4. Boehm, B.: Software Engineering Economics, Upper Saddle River, NJ, USA. Pren-
tice Hall PTR, Englewood Cliffs (1981)

5. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Logic-based Regulatory Conformance
Checking. In: Paech, B., Martell, C. (eds.) Monterey Workshop 2007. LNCS,
vol. 5320, pp. 147–160. Springer, Heidelberg (2008)

6. Fu, J., Bastani, F., Yen, I.: Model-Driven Prototyping Based Requirements Elicita-
tion. In: Paech, B., Martell, C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320,
pp. 43–61. Springer, Heidelberg (2008)

7. Goedicke, M., Herrmann, T.: A Case for ViewPoints and Documents. In: Paech, B.,
Martell, C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp. 62–84. Springer,
Heidelberg (2008)

8. Hoss, A., Carver, D.: Towards Combining Ontologies and Model Weaving for the
Evolution of Requirements Models. In: Paech, B., Martell, C. (eds.) Monterey
Workshop 2007. LNCS, vol. 5320, pp. 85–102. Springer, Heidelberg (2008)

9. Kelly, D.: A software chasm: Software engineering and scientific computing. IEEE
Software 24(6), 119–120 (November-December 2007)

10. Kof, L.: On the Identification of Goals in Stakeholders Dialogs. In: Paech, B.,
Martell, C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp. 161–181.
Springer, Heidelberg (2008)

11. Lange, D.: Text Classification and Machine Learning Support for Requirements
Analysis Using Blogs. In: Paech, B., Martell, C. (eds.) Monterey Workshop 2007.
LNCS, vol. 5320, pp. 182–195. Springer, Heidelberg (2008)

12. Popescu, D., Rugaber, S., Medvidovic, N., Berry, D.: Reducing Ambiguities in
Requirements Specifications via Automatically Created Object-Oriented Models.
In: Paech, B., Martell, C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp.
103–124. Springer, Heidelberg (2008)

13. Sawyer, P., Gacitua, R., Stone, A.: Profiling and Tracing Stakeholder Needs. In:
Paech, B., Martell, C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp. 196–
213. Springer, Heidelberg (2008)

14. Stone, A., Sawyer, P.: Identifying tacit knowledge-based requirements. Software,
IEE Proceedings 153(6), 211–218 (2006)

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 25–42, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Could an Agile Requirements Analysis Be
Automated?—Lessons Learned from the Successful

Overhauling of an Industrial Automation System

Thomas Aschauer1, Gerd Dauenhauer1, Patricia Derler1, Wolfgang Pree1,
and Christoph Steindl2

1 C. Doppler Laboratory Embedded Software Systems, Univ. Salzburg
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at
www.cs.uni-salzburg.at

2 Catalysts GmbH,
Prager Str. 6, 4040 Linz, Austria
steindl@catalysts.cc

www.catalysts.cc

Abstract. This paper sketches a recent successful requirements analysis of a
complex industrial automation system that mainly required a talented expert,
with a beginner’s mind, who has been willing to dig into the domain details to-
gether with a committed customer and a motivated team. With these key factors
and the application of an appropriate combination of well-established and some
newer methods and tools, we were able to efficiently elicit, refine, and validate
requirements. From this specific context, we try to derive implications for inno-
vative requirements analysis. We argue that in projects that go beyond simple,
well defined, and well understood applications, automated requirements analy-
sis is unlikely to lead to a successful specification of a system.

Keywords: requirements analysis, agile development, use cases, automation
systems.

1 Introduction

Our research group cooperates with an industry partner that is a dominant player in
the area of a specific kind of test automation systems that are used, for example, in the
automotive industry. These automation systems need to be tailored to customer de-
mands. For the software solution our research partner currently offers, this tailoring
process is not supported well. Thus we were asked to develop a system that radically
improves the customization and operation process of such systems.

The inherent complexity of the domain and the vagueness of the original require-
ments document we were provided with were major challenges for the requirements
engineering process. We chose an agile, prototype driven approach with short feed-
back cycles. In conjunction with an unbiased team, which consisted of a top software
scientist and four motivated software engineers, we were able to successfully elicit

26 T. Aschauer et al.

and analyze the requirements and to come up with an innovative solution. We are
confident that it is able to solve the current system’s shortcomings and to sustainably
improve our partner’s competitive advantage.

The main contribution of this paper is twofold. First it presents a successful re-
quirements analysis process for an industrial innovation project. Second it argues that
in this particular case automatic requirements analysis methods were not applicable.
As such it serves as a reality check for natural language processing methods in re-
quirements analysis.

The remainder of this section briefly introduces the target domain and gives a short
overview of the customization process in the current system. Section 2 describes the
project context, the initial requirements and the team structure. The actual require-
ments analysis process and the development of the prototypes are described in section
3. Section 4 presents a case study on how the team’s understanding of one particular
requirement grew over time. Section 5 concludes that automated methods for analyz-
ing requirements are not likely to have succeeded for this particular project setting.

1.1 The Domain of Test Automation Systems

This section briefly introduces the application domain of test automation systems.
Typically, a test system is used to acquire measurement data from operations of a
device under test. The resulting data is required, for example, for research and devel-
opment or for quality assurance. Various variants of test systems are used in industry.
An automated test system typically comprises the following parts: a device under test
(or device for short), automatic test equipment (or equipment for short) that simulates
force, a mechanical link between the device under test and the automatic test equip-
ment for force transmission, measurement equipment ranging from simple tempera-
ture sensors to sophisticated measurement devices, actuators such a throttles, I/O
systems as interface to an automation system that controls the test procedure, and
conditioning devices controlling supply for air, oil, water, etc.

This system structure is depicted in Figure 1: Boxes represent hardware compo-
nents, the block arrow represents the mechanical link, solid lines represent electrical
connections between components, and the dotted line represents media supply for air,
oil, water, etc.
A typical test procedure for an automated test system has a duration ranging from
minutes to hours or even days. During that time, up to millions of measurement val-
ues are recorded, which can amount to several gigabytes of measurement data. The
automation system’s software is responsible for controlling the device and the equip-
ment in real-time, for executing test procedures, and for collecting and recording the
measurement data. Evaluation of the measurement data is performed by separate post-
processing tools.

An automated test system can be operated as stand alone system or in a larger con-
text, the so-called test-factory. A test-factory is a set of separate automated test sys-
tems, with possibly different capabilities, that share common infrastructure such as
measurement data archiving. The overall goal of a test-factory is to optimize the
throughput by scheduling test orders accordingly.

 Could an Agile Requirements Analysis Be Automated? 27

Automatic Test
Equipment (ATE)

Device Under Test
(DUT)

Automation
System

I/O DevicesMeasurement
Devices

Actuators Sensors Actuators Sensors

Conditioning
Devices

ForceAutomatic Test
Equipment (ATE)

Device Under Test
(DUT)

Automation
System

I/O DevicesMeasurement
Devices

Actuators Sensors Actuators Sensors

Conditioning
Devices

Force

Fig. 1. Typical automated test system structure

1.2 Problems of the Current System

Our work is based on the cooperation with a dominant player in the field of test auto-
mation systems. Our research partner offers a software solution that can be applied to
all kinds of test systems through customization to specific requirements. The software
evolved over the last two decades during which its code base, mainly written in C++
and C, grew to about 1.5 million lines of code.

The automation system software consists of a number of specialized subsystems
such as a hard real-time kernel executing the device under test and the automatic test
equipment, and a subsystem for measurement data acquisition. The interactions be-
tween these subsystems are established through variables in globally shared memory.
Thus the subsystems have to be configured consistently. Due to the evolution of these
subsystems, they all use their own configuration file formats for customization, rang-
ing from plain text files to binary files.

Configuration parameters describe properties of hardware and software. Properties
of hardware are, for example, the device’s weight. Software properties described in
configuration files include the characteristic values for the equipment’s controller, the
safety limits for the force affecting the device, device driver settings for certain meas-
urement devices, or user defined formulas and scripts to be executed by the automa-
tion system.

A major hurdle for users that have to customize the system is that the current tool
directly reflects the automation system’s software structure and low-level design
decisions in the user interface. Moreover, all parameters are presented in a tabular
form. The main view basically is a plain table, where each table row represents the
associated subsystem of the automation system and is used to navigate to a detailed
view for the subsystem. In other words, the configuration interface is presented as a
set of interrelated spread-sheet pages.

As an example, the automation system has a separate subsystem for proportional-
integral-derivative controllers (PID-controllers). When a user needs to modify the
parameters for a specific controller of the equipment, the user would need to navigate

28 T. Aschauer et al.

to that subsystem, browse through all PID-controllers in the system to find the right
one, and then modify the corresponding parameters. This customization system forces
engineers that are used working with the parts of the test system such as the device,
the equipment, etc. to understand the internals of the software to be able to set pa-
rameters correctly.

In the customization process, engineers have to modify parameters in configuration
files that are loaded by the automation system at system startup. In a typical setup
there are about 10,000 configuration parameters with about 120,000 values to be set
correctly. The creation of a consistent set of configuration files is a time consuming
and error prone procedure which may take weeks or even months for a complex test
system setup.

The current systems offers very limited support for the initial creation of these con-
figuration files. Only the skeletons representing the structure of the test system can be
created by a tool, the details have to be filled in manually. The time it takes to get the
system running depends on the experience of the engineers in charge. They often use
a form of ad-hoc reuse by using configuration files from previous similar projects as
templates.

Once a set of configuration files is created, it has to be kept synchronized with the
automation system software. When software is updated during the lifetime of a test
system, its configuration files have to be modified accordingly. Again, tool support
for the update process only barely exists. Updating configuration files has to be
performed manually. As a consequence, customers update their automation system
software to major revisions only when absolutely necessary, because the process of
modifying configurations files is time consuming and error prone. Our research part-
ner therefore has to invest a lot of development effort in the maintenance of many
different software revisions in parallel.

2 Project Setup

Our research partner identified the necessity for improving the current customization
process. Due to the fact that multiple tries to overcome the current system’s shortcom-
ings by the company itself have failed for different reasons, a research project in co-
operation with our research institute was initiated. This section briefly describes the
initial requirements and the project team structure.

2.1 Initial Requirements

The main mission goal is to develop a system that radically improves the usability of
customization and operation of test automation systems. In the beginning, we were
provided with a rather haphazard requirements document consisting of about 20
items. The list includes specific functional requirements as well as some general non-
functional requirements such as maintainability and security issues. The most impor-
tant requirements are summarized as follows:

a) Introduce components, i.e. named sets of parameters, that naturally map to do-
main entities such as device under test, automatic test equipment, PID-controller,
etc. and that describe both their visualization and their parameters.

 Could an Agile Requirements Analysis Be Automated? 29

b) On-site extensibility, meaning that new functionality can be added to the system
without the need to recompile any source code.

c) Provide different parameter views including guidance through customization
tasks. The basic idea is that of separation of concerns [1], meaning the splitting
of various aspects of a system into independent parts that can be dealt with inde-
pendently. As an example, there should be a separate view for hardware-related
parameters, such as the weight of the device, and another separate view for soft-
ware-related parameters, such as the characteristic values of the PID-controller
for the equipment.

d) Support users in mastering the complexity of test system setups, e.g. by hiding
those parameters that are not needed for a specific task. For example, a service
task concerned with finding the defect part between the automation system and a
certain device does not require knowledge about the simulation model for the
device.

e) Provide a context-aware work environment that supports the user in specifying only
valid parameter values for a component by evaluating the component’s context.

f) Do as many checks as possible as early as possible. Inconsistent measurement and
consumption frequencies, for example, can be detected by comparing parameters
of connected components when the connection is established, whereas the exis-
tence of a piece of hardware in a test system can only be checked when the system
is connected to the actual test system. Furthermore, ensure that these checks can be
integrated in different products to avoid duplicated implementations.

g) Replace configuration files by parameter sets, i.e. by components.
h) Provide an operations view describing a component’s visualization and the pa-

rameters that are modifiable during the operation of a test system.
i) Compatibility to existing systems, which means supporting a wide range of tools

and technologies.
j) Maintainability of components, which means support for versioning, change

tracking, comparison, and interoperability between different systems and also
between different software versions.

In addition, we also received a huge amount of user documentation, system require-
ments specifications for the existing system, and UML diagrams. The latter consisted
of use case diagrams and use cases describing functionality at the level of specific
technical details. These documents evolved along with the existing system during the
last two decades. They were, however, hardly up to date.

2.2 Project Team and Location

Due to the importance of the project for our customer, the company is fully commit-
ted to it and we report to one of its executives. The project is set up around one of the
company’s most respected experts, who is also fully committed to the project goals.
The project leader has more than one decade of experience in the domain and long
time experience in successfully managing projects of comparable complexity, includ-
ing innovative software development projects. Later on we realized that this particular
project leader is like an advocate for the project, in the sense as Wile described
knowledgeable advocates as crucial for the success of their domain specific language
experiments [2].

30 T. Aschauer et al.

Company representatives with in-depth domain knowledge as well as product
managers were available in the requirements analysis phase. Additionally, we had
access to employees that formerly were associated with competitors and also to de-
velopers of the current system.

The initial software development team consisted of one top software scientist as
team leader, and four young software engineers with little or no project experience.
The team leader has extensive software development experience, social skills training,
and an additional solid background in automation systems, but had no prior knowl-
edge of the particular automated test system.

During the course of the project, the team grew in size by two software developers
and two domain engineers with background in automation systems and the target
domain.

The project team intentionally resides at a different geographical location than our
partner, which emphasizes the company’s intention to strike a new path in the devel-
opment of their software solutions.

3 Prototyping-Based, Agile Requirement Analysis

Considering the ambiguity in the provided requirements document (cf. section 2.1),
the fact that the team had no prior knowledge of the domain and the overall vision of
the project seemed somewhat unsettled, the right methods for the requirements engi-
neering task had to be chosen.

We decided to stick to an agile approach for the following reasons: First, the short
feedback cycles would allow us to quickly respond to changes in the requirements and
to misunderstandings of the original requirements document. As stated by Hirsch,
“the desired properties of the end product can not be known until at least part of the
solution is built” [3]. Second, the project leader’s intuition gave him the feeling that
for an innovation project, a front-up design method would not lead to success. Third,
the team leader had previous, successful experience in applying agile methods.

This section chronologically describes the project phases, beginning from the ini-
tial phases of paper prototyping to the current phase. In addition, the planned project
phases are sketched to depict the different approaches necessary in the different
phases.

3.1 Phase I: Paper Prototyping (September 2006 – February 2007)

Since the project team was completely new to the domain, we started the project with
a 5 day workshop. We approached the problem from the user’s point of view, first
developing a global context with the user roles and their targets, then detailing the
tasks of the users – completely unrestricted by the existing system. During the first
workshops we looked also at systems from three competitors.

We wrote down the discussions in detailed workshop protocols, and we visualized
the scenarios on slides, some with animations so that they resembled how a system
could actually work. Some of these presentations were prepared from one workshop
day to the other, so that we could start with a recapitulation of the previous day, and
extend on it.

 Could an Agile Requirements Analysis Be Automated? 31

Figure 2 shows a conceptual drawing for how a perfect parameterization system
would show the physical parts of a sample test system. Basically, boxes represent
components which are pieces of hardware or software that are connected to other com-
ponents. Concepts such as grouping, abstraction by hierarchically structuring compo-
nents, and different ways of connecting components were applied and refined using
these drawings.

Automation
System

Interface Cabinet Conditioning
Device IIO Device

Fieldbus I
Fieldbus II

Ethernet
Fieldbus III

Boom
IO Device

Application
System

Device
Under
Test

Automatic
Test

Equipment

Measurement
Device 1

Measurement
Device 2

Fig. 2. Conceptual drawing showing the physical parts of a test system

We held several workshops in a row, with approximately a month in between,
which gave us time to understand the existing system. Thus we were able to concep-
tualize the requirements step by step. This process was documented by writing a glos-
sary comprising about 90 terms as well as by analyzing and writing some 130 use
cases. At that time the project focus to develop a system that would eventually replace
the parameterization tool of the current software solution was clearly communicated
to the team.

Due to the radical departure from the original system, we knew that we had to pre-
sent the ideas in an easy-to-grasp way; hence we decided to develop a mock-up proto-
type that would allow showing how various users, in their various roles, would use
the system. For that we specified scenarios such that we could exactly define the click
paths through the prototype for every user. Numerous concepts and ideas were pro-
posed and discussed in simple drawings on paper, in slide presentations and figures
drawn with common drawing tools. These drawings exemplified how the software
could appear for each scenario.

Similar to the drawing in Figure 2, the mock-up prototype provided a view repre-
senting the physical components of a test system. Figure 3 shows the corresponding
screen.

32 T. Aschauer et al.

Wall

Device
Under

Test

Automation
System

Rack

 Interface
Cabinet

Pallet / Cart

Boom

Building
Services

Automatic
Test

Equipment

Measurement
Device 1

Measurement
Device 2

Automation
System

Console

Conditioning
Device

1

232

232232

Fig. 3. Physical view of test system in mock-up prototype

The development of the mock-up prototype served as a vehicle to document and
elicit customer requirements and to gain domain understanding, such that we were
able to derive 16 core features which represent the essence of the system’s functional-
ity. Each of those core features was meant to be orthogonal to the others; together
they yield a powerful system to solve the underlying problem. The most essential core
features are summarized as follows:

• Definition of the concept of domain components. Domain components are de-
fined as sets of parameters that are grouped into self-contained units.

• Support for configuring domain components, that is, setting their parameters or
connecting them to other domain components.

• Support for combining domain components in groups or hierarchies. By allowing
domain components to be built hierarchically, that is, by layering component sys-
tems as described by Szyperski [4], complexity can be managed. Collapse and
expand mechanisms help hiding unnecessary details.

• Support for management of domain components in libraries, which might be
predefined by our customer or be user-specific.

 Could an Agile Requirements Analysis Be Automated? 33

• Support for comparing domain components and helping users to discover simi-
larities and differences.

• Support for versioning of domain components.
• A mechanism for undo and redo management and for creating and recording

macros at the user interface layer.
• Provide a mechanism for guiding users performing predefined tasks or for resolv-

ing problems. Furthermore, allow users to provide their own experience in form
of guidance for other users.

• Management of different views of domain components and corresponding access
rights.

For the actual demonstrations we decided to have one person clicking through the
prototype, while another person would do the talking, watching the audience, being
able to answer questions and to improvise, and to lead the questions back to the click
paths that we had prepared beforehand. Eventually the team presented the prototype,
which was enthusiastically received by the customer’s top management in January
2007.

We captured the demonstrations as video sequences with a couple of introductory
slides and an animated demo part. Those videos had several advantages:

• They allowed everyone to get some insights about what the project was about.
With the prototype, getting these insights would not have been possible, since the
prototype required in-depth knowledge of the prototype’s implementation and the
predefined click-paths. Only a small percentage of click-paths a typical user
would do were implemented.

• They allowed us to preserve the presentations, so that we ourselves could have a
look at them later on, e.g. when new people were to join the team.

• They allowed us to explain the system without having to conserve the executable
or without installing the executables; hence it was easier to share.

• They forced us to get the user stories right and consistent. We had to remove all
vagueness from the ideas.

However, the videos also had some drawbacks, e.g.:

• Even though we asked for feedback on the last slide shown in the videos, we did
not get valuable feedback from the customer.

• We were told not to distribute information about the project in this format any
more, since some of the customer’s employees spent much time on them. More-
over, the videos caused disturbance in the current system’s development team,
since this was one of the first sources of information about our project that was
made available to them. As Ramos et al. point out [5], the introduction of radi-
cally new software and the vision of a future work reality associated with it is
never free of emotions.

The system to be built was split in two layers, a generic framework layer and an
application layer built on top of the framework. The framework, developed by our
team, provides a platform for building custom applications that can be developed by
application engineers with profound domain knowledge, but without programming
skills. While the framework incorporates generic domain knowledge, such as sensors,

34 T. Aschauer et al.

measurement values, etc., the application incorporates specific domain knowledge
such as the types of equipment applicable for a specific device and test system.

During the first project phase, the software development team gradually gained un-
derstanding for the customer’s demand of a component-oriented framework for test
automation systems. The different interpretations of the term component framework
were one of the major causes of confusion between the customer representatives and
the development team: The development team had components in mind as defined in
software science, that is, components describing a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only. Such a software
component can be deployed independently and is subject to composition by third
parties [6]. Furthermore, the development team had a technical component framework
in mind, in the sense of e.g. the OSGi platform [7], while the customer representatives
thought of a framework for modeling and assembling components specific to the
domain, such as DUT and controllers. Domain components are somehow related to
software science components, that is, they are units of composition, they explicitly
describe dependencies, and they are units of deployment. For the further success of
the project it was crucial to overcome this misunderstanding.

3.2 Phase II: Working Prototype Based on a Domain-Specific Language
(March 2007 – September 2007)

Early in the project, we considered a domain-specific language (DSL) as crucial basis
for describing test system components. Motivated by our project leader, the DSL was
designed as a generic one for describing automation systems. This means that the
DSL offers, for example, a means for describing data types of values, the construct of
a generic component for grouping values and also for grouping associations between
these components. The language for describing test systems is an extension of the
generic one. We refer to the generic language as CDL (Component Description Lan-
guage) and to the test-system-specific language as tsCDL.

For the refinement of CDL and tsCDL we applied an informal approach. Starting
in April, we evaluated tools and methodologies that would best fit this task. We first
used the Unifid Modeling Language (UML) syntax [8] to sketch and iteratively refine
the key test automation system concepts such as electrical plugs, wires, mechanical
connections, sensors, and actuators. It turned out that a simple UML diagram drawing
tool with limited UML capabilities was better suited for this purpose compared to a
full-featured UML editor.

In addition to the UML-based CDL and tsCDL refinement, we came up with a tex-
tual representation of CDL and tsCDL. We used both, the UML-based and text-based
versions of tsCDL to describe test system components such as devices, data acquisi-
tion units and also complete test systems. The definition and refinement of the textual
syntax of the language and the UML-based version were intertwined.

The following code fragment in Figure 4 sketches the description of a test automa-
tion system. The sample test automation system consists of three components, the
automatic test equipment Ate, an I/O hardware called IO, and the automation system
called AuSys. The component Ate is of type AteType127, the component IO is of type
IODevice, and the AuSys component is of type AutomationSystemPC. The test auto-
mation system description also states which locations are relevant in this case: a loca-
tion called Floor3 and a ControlRoom. The second line in the RELATIONS section

 Could an Agile Requirements Analysis Be Automated? 35

harnesses the location description by stating that the Ate component is located on
Floor3. The Ate component is hierarchically composed of other components, such as
the BendingBeam. The BendingBeam’s plug Plug2 is connected to plug X17 of the IO
component, which is specified in the first line of the RELATIONS section.

COMPONENT TestSystem
 COMPONENTS
 Ate : AteType127
 IO : IODevice
 AuSys : AutomationSystemPC
 END
 LOCATIONS
 Floor3
 ControlRoom
 END
 RELATIONS
 Ate.BendingBeam.Plug2 CONNECTS IO.X17
 Ate AT Floor3
 ...
 END
END

Fig. 4. Sample test automation system described textually in the tsCDL

Splitting the domain-description language in a generic one (CDL) and a test-
system-specific one (tsCDL) is an example of an architectural aspect that could not be
derived as requirement from the information we received from the customer. Never-
theless, this extra effort of coming up with both description languages turned out to be
crucial for other system parts that rely on them. For example, we only needed to im-
plement an interactive visual editor for CDL, not the much richer tsCDL which is
constantly changed and extended. This is also true for the persistence layer for storing
and retrieving domain components. A key objective for the project was the compati-
bility between components stored in different software versions. Another key objec-
tive was that software upgrades must not result in costly database schema migrations.
As such, the persistence format has to be stable and should not change often during
the further evolution of the software. Our experiments corroborated that we only need
to define a database schema for the CDL, not for the the tsCDL.

The design of CDL and tsCDL as well as the development of the interactive visual
editor, the persistence mechanism for CDL components and their versioning were
inherently difficult to plan. Initial attempts to establish a development process, such
as Scrum [9], were abandoned since the estimated efforts turned out to be unrealistic
and the process became an overhead without any benefit.

The major milestone of Phase II was the development of a prototypical first ver-
sion of the software system incorporating the most essential features of the 16 core
features identified in the previous phase.

3.3 Decompression Phase III (September 2007 – February 2008)

After presenting the results of the second phase to the executives of our customer, the
team entered a short decompression phase [10], which means the team performed a

36 T. Aschauer et al.

retrospective to improve subsequent phases. The retrospective revealed the following
key success factor: Defining concrete scenarios helped to focus the development of
the prototype. Furthermore, the scenarios had to be defined in detail, so that all
vagueness had to be eliminated and the concepts had to be sound and understandable
from the user’s point of view.

The following factor has been identified as restraining to the project success: Due
to the inherent complexity of the application domain and its peculiarities, the team
depends on a variety of information sources. We did not consistently question the
quality and the completeness of the information we got.

3.4 From Research Prototype to Product (Starting February 2008)

The software system has reached a level of maturity so that domain engineers can use
it to model real-world test system components. The foundation, based on CDL and
tsCDL, is stable and additional features are continuously integrated enabling domain
engineers to model the various aspects of test system components as they are found in
test system products. The goal of a milestone in August 2008 is to demonstrate that
the software system is capable of modeling, configuring and operating a real test
system. The long-term plan is that the newly developed software system will be
shipped as product to customers in 2010.

The additionally required features are derived from the feedback of the customer's
domain engineers. We have established a bi-weekly release cycle now. The release
planning incorporates the requests of domain engineers in the form of user stories,
describing the expected behavior in terms of the user interface. These stories are usu-
ally a few lines of text and the effort to implement them ranges from one person-day
to about one person-week.

These requests of domain engineers represents one source for our release planning.
The other sources are the initial requirements as presented in section 2.1 and the
refactorings suggested by the development team itself. We treat the identified refac-
torings of the existing code as user stories.

4 Case Study: Understanding the Versioning Requirement

We exemplify how our understanding of the requirements evolved over time by pick-
ing one of the 20 initial requirements which we consider as a representative example.
The initial list of requirements contained the following text, which was summarized
as the last bullet-hole item in section 2.1:

«12. Maintainability: it must be possible to version parameters and parameter sets;
Change logging, i.e. who changed what and when; Export/import among test
fields, also language independent; Search/find; Difference of parameters and pa-
rameter sets; Undo; Interoperability of previous software versions with data in
newer version and vice versa»

We were quite aware that this key requirement was intentionally phrased quite
vaguely, for example, the “and vice versa” phrase. Therefore, we tried to de-scope
some of the requirements for the initial project Phase I:
«12. Maintainability:…»

 Could an Agile Requirements Analysis Be Automated? 37

« we will propose a concept for the operation until the end of 2006
 the domain model and meta-model will allow for versions
 since the implementation would require major changes to the existing system,

we won’t perform them until the end of 2006»

So for a while we turned back to the more challenging requirements and developed
concepts, prototypes etc. as explained in section 0 above. One of the 16 core features
identified in Phase I was the following:

«13. Updating of components with a transport mechanism for changes:
It is possible to deliver application components in a new version and deploy
them. Macros can be used as transport mechanism for changes.
There will be a language for describing:

• How old data shall be migrated
• Whether the new version must be deployed or can (optionally) be deployed
• Whether user interaction / acknowledgement is necessary or whether the

update shall be performed silently

Updating application components is not about updating software, but about up-
dating descriptions of components (together with the underlying data).

Updating of system functions would require a software update which we do not
address in the first release. »

Even then we thought that updating would “simply” mean that we need some flexible
mechanism to get data of older versions migrated to the schema of the new version.
During a workshop with another project team of the customer in February 2007 they
presented the following requirements or conclusions:

«‘Import mechanism is enabled to do needed data migration’
‘Migration Framework is a MUST!’
‘Be migration aware’
‘Versioning - Implemented within our storage services’»

We took those statements again as hints that we will only need to import old data in
new versions of the software. We acknowledged the need for a migration framework
and versioning but deferred the topic nevertheless, believing that we will also be able
to implement it in the persistence layer with some import / export filters.

In March 2007, we augmented the requirements with use cases. We identified the
following use cases:

• UC Versioning 1 – Select a version
• UC Versioning 2 – Browse version log
• UC Updating 1 – Define data migration
• UC Updating 2 – Perform data migration

However, we sketched only the main scenario for the versioning use cases, and left
the updating use cases undefined. Back then, leaving everything open was the best we
could do, since any detail would have been speculation.

At the end of March 2007, we had an architecture workshop with the customer
where the development manager of the existing system mentioned that the new
system will have to sustain the concurrent operation of automated test systems in

38 T. Aschauer et al.

multiple versions. We considered it sufficient if our software were able to cope with
new and old versions of the data.

In Phase III at the beginning of December 2007, we discussed the topic in detail
with our advocate. The discussion was summarized with the following versioning
requirements:

• In a test field, multiple test systems will be in use with various versions of the
new software system.

• The new software system must be able to process old and new components.
• It shall be possible to migrate components in old versions to newer versions, such

that test systems with new versions of the software system can use the old
components.

• If possible, it shall be possible to use the new components even on old test sys-
tems, possibly just in a read-only mode.

We discussed the implications of those requirements on the various layers of the sys-
tem and how changes in each layer would affect upper layers. Analogies from books
on database refactoring were drawn, e.g. the idea of scaffolding code in the database,
which transparently enables one version of the software to work with several versions
of the data model. As described by Ambler [11], this can be achieved by introducing
views and triggers in the database layer. Furthermore, we drew analogies from related
scientific papers, dealing for example with the problem how to co-evolve a model
when the corresponding meta-model evolves, as described by Wachsmuth [12].

We identified two principal approaches to deal with version changes: to track all
transformations, i.e. a priori, versus to derive modifications from delta detection, i.e. a
posteriori. The latter approach was ruled out by construction of examples that showed
its deficiencies.

However, we still did not really accept the need for bidirectional compatibility, i.e.
that new versions of the software can work with old and new data, and that old ver-
sions of the software can work with old and new data.

At the end of December 2007, our advocate kept pushing towards bidirectional
compatibility. In January 2008, we finally accepted the challenge of bidirectional
compatibility and gave it a try, i.e. we did a so-called spike in eXtreme Programming
terminology [13]:

• We refined the implementation from the user’s point of view.
• We implemented the solution, which required several extensions of the persis-

tence layer and upper software layers.
• We demonstrated to the customer how data model transformations can be defined

and how a new version of the system can then automatically transform data from
the old format into the new format. Furthermore we demonstrated how an old
version of the system can automatically transform data from the new format into
the old format, given that a bidirectional mapping between old and new meta-
model exists.

Summarizing the case study,

• we considered versioning and updating as a black box for a long time
• we ignored repeated hints by the customer, or we did not understand them
• we placated our advocate for a long time

 Could an Agile Requirements Analysis Be Automated? 39

Finally, we worked through the problem within three calendar weeks, and we came up
with an appropriate solution for a problem that the customer has had for decades but
that resisted several previous attempts to be solved. In the end, all the extensions did
not have a negative impact on the existing architecture. We think that it would have
been impossible to derive the requirements of this aspect from documents we received
from the customer.

5 Limits of Automated Requirements Analysis

This real-world project corroborates, in our point of view, that requirements analysis
can barely be automated if the stakeholders do not have a clear understanding about a
software system. In this case it was the feeling of the customer that the current system
could be improved significantly. The customer and its team were somehow trapped in
the existing system. Knowing too many details and worrying about significant
changes made it virtually impossible to come up with appropriate requirements for an
overhauled system. The required creativity cannot be expected from tools. To quote
Deming [14]: “As a good rule, profound knowledge comes from the outside, and by
invitation. A system cannot understand itself.”

The beginner’s mind [15] allowed the team to profoundly analyze the features of
the current system as well as its strengths and weaknesses. This is a quality already
pointed out by Berry [16]. He describes a computer-system-savvy person without any
knowledge of the domain as the person asking ignorant, not stupid, questions to ex-
pose tacit assumptions made by domain-expert stakeholders assuming incorrectly that
all other domain-expert stakeholders understand. By making those assumptions ex-
plicit, conflicts in the understanding are discovered at an early stage in the software
development.

5.1 Could Automated Support for Requirements Analysis Have Been
Beneficial?

Reflecting on potential use of automated approaches to requirements analysis, we
identified two areas where application of such approaches could have been beneficial
in our case: term extraction and preventing ambiguity. For a recent overview of state-
of-the-art approaches to requirements engineering in general see Cheng and Atlee [17].

Since the project team was completely new to the problem domain, automated
support for extracting the domain specific terms could have been applied. As Kof
points out [18], a thorough understanding of domain concepts is essential and a pre-
cise definition for each concept is required. An approach to semi-automatically ex-
tract ontology from requirements documents is proposed. Such an approach or similar
ones are, however, likely to have failed in our case for the following reasons:

• As pointed out in section 0, the initial requirements document we received con-
sisted of only 20 items that just briefly described the system to be built. Domain
specific terms occurred in the document, but due to the document’s limited size the
usage of a semi-automated or an automated tool for term extraction is not likely to

40 T. Aschauer et al.

have produced substantially better results than performing this task manually. In
the paper prototyping Phase I, as described in section 0, we created a glossary for
the essential domain concepts.

• Along with the initial requirements document, we also received a huge amount of
documents related to the current system, such as requirements specifications and
user documentation. When the team sifted through these documents, it soon be-
came obvious that most of the information was not relevant in the early project
phases. It still is in question whether the majority of the material will be of any use
at all since it deals with specific technical details and peculiarities. Applying a sys-
tem for term or ontology extraction on these documents would have been a chal-
lenge on its own due to the size of the documents. It is not clear how such a system
could have helped in the decision which concepts to ignore, and which not to ig-
nore, in particular if one keeps in mind that the number of essential concepts is
very small compared to the overall number of concepts. For example, an automatic
analysis of the documentation would likely have identified the normname as one of
the most relevant concepts in the domain just by the number of references. Norm-
names are, however, just a necessity of the current system's implementation: A
normname is the unique name of a variable in the global shared-memory which is
used to connect the different functions and subsystems, as mentioned in section
1.2. These global variable names are one major shortcoming of the current system
that we could get rid of in the new system.

• Important concepts of the new system were completely missing in the current sys-
tem; they were only described by general terms in the initial list of requirements.
The versioning and compatibility requirement as described in section 0 is an exam-
ple. Term extraction techniques would not have been helpful for understanding
these requirements either.

Another area where application of natural language processing tools would have been
conceivable is in preventing ambiguity in the documents we generated. For example,
Fantechi et al. [19] present an approach that analyzes use cases written in natural
language and provide certain metrics for measuring aspects related to ambiguity.
These might have improved the consistency of the use case documents we created in
Phase I as described in section 0. Because these use cases were not the final specifica-
tion of the system to be built, but just a vehicle to further understand the requirements
and to structure the problem domain, fewer ambiguities in these documents would
have just been a minor benefit.

For a project of this type, i.e. searching for a creative and revolutionary solution,
the successful application of automated techniques is unlikely. Typically, the cus-
tomer would not present a fully specified requirements document and expect a devel-
opment team to return a working program after a certain amount of time, within a
predefined budget. Instead, in an iterative process with frequent workshops, demon-
strations and presentations, the customer can see how the project is evolving and how
the team performs. Moreover, the team can gradually gain better understanding of the
customer’s real demands.

 Could an Agile Requirements Analysis Be Automated? 41

6 Conclusion

We assume that none of the tools that automate requirements analysis could lead to a
successful completion of the requirements analysis for our project, because the avail-
able inputs from the customer are too haphazard and the terminology is not precise
enough—a situation that is typical for many real-world software projects. In such a
context the sketched agile requirements analysis with short feedback cycles together
with the communication vehicle of a throw-away prototype has turned out to be an
appropriate requirements analysis method. We are convinced that no automated system
would have been able to support, let alone accomplish something close to such a suc-
cessful requirements analysis and specification based on the available natural language
descriptions of the requirements, the current system and its envisioned features.

References

1. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
2. Wile, D.: Lessons Learned from Real DSL Experiments. In: Proceedings of the 36th Ha-

waii International Conference on System Sciences (HICSS 2003). IEEE Computer Society
Press, Los Alamitos (2003)

3. Hirsch, M.: Moving from a Plan Driven Culture to Agile Development. In: ICSE 2005 the
27th International Conference on Software Engineering, St. Louis (invited talk) (2005)

4. Szyperski, C.: Component software and the way ahead. In: Leavens, G.T., Sitaraman, M.
(eds.) Foundations of Component-Based Systems, pp. 1–20. Cambridge University Press,
New York (2000)

5. Ramos, I., Berry, D.M., Carvalho, J.Á.: The Role of Emotion, Values, and Beliefs in the
Construction of Innovative Work Realities. In: Bustard, D.W., Liu, W., Sterritt, R. (eds.)
Soft-Ware 2002. LNCS, vol. 2311, pp. 300–314. Springer, Heidelberg (2002)

6. Szyperski, C., Pfister, C.: Workshop on Component-Oriented Programming, Summary. In:
Muehlhaeuser, M. (ed.) Object-Oriented Programming – ECOOP 1996 Workshop Reader.
Dpunkt Verlag, Heidelberg (1997)

7. OSGi Alliance, Open Services Gateway initiative, http://www.osgi.org/
8. UML, Unified Modelling Language, http://www.uml.org/
9. Rising, L., Janoff, N.S.: The Scrum Software Development Process for Small Teams.

IEEE Software 17(4), 26–32 (2000)
10. Gamma, E.: Agile, open source, distributed, and on-time: inside the eclipse development

process. In: ICSE 2005 the 27th International Conference on Software Engineering, St.
Louis (keynote talk) (2005)

11. Ambler, S.W., Sadalage, P.J.: Refactoring Databases: Evolutionary Database Design. Ad-
dison Wesley Signature Series. Addison-Wesley, Reading (2006)

12. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E. (ed.)
ECOOP 2007. LNCS, vol. 4609. Springer, Heidelberg (2007)

13. Beck, K.: Test-driven development: By example. Addison-Wesley, Reading (2002)
14. Deming, W.E.: The New Economics for Industry, Government, Education, 2nd edn. MIT

Press, Cambridge (2000)
15. Suzuki, S.: Zen Mind, Beginner’s Mind, Weatherhill (1973)
16. Berry, D.M.: The Importance of Ignorance in Requirements Engineering. Journal of Sys-

tems and Software (1995)

42 T. Aschauer et al.

17. Cheng, B.H., Atlee, J.M.: Research Directions in Requirements Engineering. In: 2007 Fu-
ture of Software Engineering, International Conference on Software Engineering. IEEE
Computer Society, Washington (2007)

18. Kof, L.: Natural Language Processing: Mature Enough for Requirements Documents
Analysis? In: Natural Language Processing and Information Systems, 10th International
Conference on Applications of Natural Language to Information Systems, Alicante, Spain
(2005)

19. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Application of Linguistic Techniques for
Use Case Analysis. In: Proceedings of the 10th Anniversary IEEE Joint international Con-
ference on Requirements Engineering. IEEE Computer Society, Washington (2002)

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 43–61, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Model-Driven Prototyping Based Requirements
Elicitation

Jicheng Fu, Farokh B. Bastani, and I-Ling Yen

Department of Computer Science
The University of Texas at Dallas

P.O. Box 830688, EC 31
Richardson, TX 75083-0688 USA

{jxf024000,bastani,ilyen}@utdallas.edu

Abstract. This paper presents a requirements elicitation approach that is based
on model-driven prototyping. Model-driven development fits naturally in evolu-
tionary prototyping because modeling and design are not treated merely as
documents but as key parts of the development process. A novel rapid program
synthesis approach is applied to speed up the prototype development. MDA, AI
planning, and component-based software development techniques are seam-
lessly integrated together in the approach to achieve rapid prototyping. More
importantly, the rapid program synthesis approach can ensure the correctness of
the generated code, which is another favorable factor in enabling the develop-
ment of a production quality prototype in a timely manner.

Keywords: Requirements Elicitation, Prototyping, Component-Based Software
Development, Code Patterns, Model-Driven Development.

1 Introduction

The primary measure of success in a software system is the degree to which it meets
the purpose for which it is intended [23]. Therefore, requirements engineering (RE)
activities are vital in ensuring successful projects. In [11], RE is defined as a branch
of software engineering concerned with real world goals, functions, and constraints on
software systems. RE facilitates the transformation from informal requirements to
formal specifications, which serve as the basis for subsequent development. However,
the secret behind the scene for the transformations is difficult to formulate because of
the problems of uncertainty, ambiguity, inconsistency, etc., inherent in the process.

Prototyping is a popular requirements elicitation technique because it enables users
to develop a concrete sense about software systems that have not yet been imple-
mented. By visualizing the software systems to be built, users can identify the true
requirements that may otherwise be impossible. Prototyping was once regarded as the
solution to RE. It has many advantages [4][15], including:

• Reduced time and cost. Problems can be detected in the early stages. There-
fore, the overall cost is greatly reduced.

• Concretely present the system operations and facilitate design decisions.

44 J. Fu, F.B. Bastani, and I.-L. Yen

• Stakeholders from all parties can actively get involved in the development
process.

Prototyping is especially useful when there is a great deal of uncertainty or when
early feedback from stakeholders is needed [4]. There are two types of prototyping,
i.e., rapid prototyping (throwaway) [15][17] and evolutionary prototyping [16]. Rapid
prototyping focuses on the demonstration of functionality and obtaining early feed-
back on requirements that are poorly understood. The essential idea is to develop a
prototype system containing any unclear requirements as quickly as possible. There
may be bugs in the prototypes and the overall quality of the implementation may not
be good. But these are tolerable in rapid prototyping. Hence, this type of prototype is
referred to as quick-and-dirty and will be discarded after any unclear requirements
have been clarified [4].

Evolutionary prototyping, on the other hand, is developed as a portion of the actual
system. It focuses on the requirements that have already been well understood. New
requirements and features are incrementally added as the development proceeds in an
iterative manner. The prototype is developed to be of production quality and will not
be thrown away [4].

However, prototyping is not thriving as expected due to the following reasons [21]:

• Management can get confused by the prototype and the production quality
version to be built. They may expect that the final deliverable will come
quickly based on enhancement and refinement of the prototype;

• Poor quality codes from the prototype may remain in the final system due to
the tendency of reusing previously written code fragments.

• Lack of mechanisms for requirements traceability.
• Prototypes may not be developed quickly due to the system complexity and

technical limitations.

The last two reasons are the most important factors that hinder the use of prototyping.
Technical people may tend to make the prototype overcomplicated, resulting in some
artifacts that are not linked back to the original requirements. Another tendency is the
omission of some functionality because stakeholders may be absorbed in some as-
pects, e.g., user interfaces, etc., while neglecting other aspects. The most valuable
property of prototyping is the fact that it can be done quickly. The lack of systematic
rapid development approaches makes it hard to fulfill this property. Without this
property, prototyping cannot have significant impact on industry.

It is, therefore, desirable to have a prototyping approach that can leverage the ad-
vantages of rapid and evolutionary prototyping. Specifically, prototypes should be
developed quickly and still maintain satisfactory quality. To achieve this goal, we
need to meet the following objectives:

(1) Make software design a part of the development process.
(2) Achieve a certain level of automation to speed up the development.
(3) Make requirements traceable.

Based on these objectives, we propose a model-driven development (MDD) based
prototyping approach. The use of model-driven approaches is especially amenable to
requirements engineering because it meets the aforementioned objectives. First,
in MDD, system design has become a part of the development process. UML 2.0,

 Model-Driven Prototyping Based Requirements Elicitation 45

developed to support MDD, has changed the view that UML diagrams only serve as
temporary documents and will be put aside at later points during the development
process. Combined with OCL (Object Constraint Language), UML is able to specify
models in a formal way. OCL is a declarative and precise specification language,
which has no side-effects and does not change the state of the system [30]. It enables
errors to be found early in the life-cycle, when fixing a fault is relatively cheap.

Second, MDD can automate the generation of infrastructural code (i.e., code
frames) through transformations between platform independent models (PIMs) and
platform specific models (PSMs) and between PSM and code. Specifically, PIM and
PSM are designed to raise the level of abstraction. PIMs are models with high level
abstractions that are independent of the implementation technology [9]. PSMs are
bound to specific platforms and implementation technologies. PSMs are generated
from PIMs through transformation and the code is in turn generated from PSMs.
These processes can be automated to increase productivity. Thus, developers can
concentrate on the development of PIMs, which are at a higher level of abstraction
than the actual codes. This is another favorable factor for speeding up the develop-
ment process.

Third, traceability is a desired feature for the design of model-driven development
tools. The existing MDD tools support a certain level of traceability. Hence, it makes
the development process amenable to requirements changes. It is always easier to
indicate what part of a PIM is affected by the changed requirements than to determine
code segments that must be modified. When parts of the code are traced back to ele-
ments in the PIM, it would be much easier to make an impact analysis of the re-
quested changes [9].

Although transformations that map models to the next level are typically used in
MDD [24][28], there are some doubts about the practicality of generating complete
systems solely via transformations. Transformations are good at generating infrastruc-
ture codes instead of business codes. In order to further speed up the development of
prototypes, a novel program synthesis technique is applied to the proposed approach.
The program synthesis technique combines AI planning and component-based syn-
thesis techniques to achieve automated generation of business/logic code. Specifi-
cally, we design and implement a fast planning graph based iterative planner, called
FIP [6]. It can deal with nondeterministic actions (actions that can generate multiple
possible effects) and generate parameterized procedure-like generic reusable plans,
which are called procedural plans. FIP can help automate the selection and organiza-
tion of underlying components to achieve the given goal. The underlying component-
based synthesis technique serves as the basis for the final code generation. It is based
on a component-based software development (CBSD) technique, code pattern
[13][14], which is concerned with reusing existing software components to build
larger applications at a lower cost and risk and in less time. The AI planning and
component-based program synthesis technique can be seamlessly integrated with
MDA to achieve even more rapid program synthesis. In this hybrid system, the devel-
opment of PIM still relies on human intervention. However, PIM is independent of
any implementation details and has a higher abstraction level than code. Hence, the
designers can put more efforts on the business-logic related aspects of the system.
Then, the static aspect of the system will be generated through MDD’s transformation
technique and the dynamic aspect will be generated through the AI planning and
component-based program synthesis technique.

46 J. Fu, F.B. Bastani, and I.-L. Yen

The rest of this paper is organized as follows: Section 2 overviews the techniques
involved in the proposed model-driven development based prototyping approach.
Section 3 presents a novel rapid program synthesis approach, in which MDA, AI
planning, and component-based program synthesis techniques are seamlessly inte-
grated together. Section 4 discusses requirements elicitation through the proposed
prototyping approach based on the advanced rapid program synthesis approach. Sec-
tion 5 concludes the paper and identifies some future research directions.

2 Overview

As rapid prototyping focuses on unclear requirements and evolutionary prototyping
focuses on well understood requirements, neither of them alone is sufficient to repre-
sent a complete system. The proposed approach intends to combine the advantages of
both methods and develop a prototype in a timely manner and of production quality.
In this sense, the proposed approach is a rapid evolutionary prototyping approach.

analyze
design

refine

refine

UML
Diagrams

PIM Generated Code

Automatic OO
NLP System

 User

Requirement
Engineer

Design
Engineer

Developer

NL requirements
description

Prototype

Manually
Developed Code

Specification
Design

PSM

Automated
Planning System

Component-based
Program Synthesis

System

Infrastructure
Code

Fig. 1. People and techniques involved in the proposed approach

Fig. 1 gives an overview of the people and techniques involved in the proposed
rapid evolutionary prototyping approach. During the requirements specification proc-
ess, use cases are the first tangible things that stakeholders interact with. They docu-
ment initial requirements and provide scenarios illustrating interactions with end users
or other systems to achieve specific business goals. Use cases and other UML ele-
ments can be automatically generated by tools [7][25] that employ natural language
processing (NLP) techniques to capture essential and relevant software requirements
from natural language descriptions. This can help automate Object-Oriented Analysis
(OOA) though the tools are not mature and only aid the requirements acquisition and
analysis process. Human involvement is mandatory, especially when contradictions
exist in the requirement specification.

 Model-Driven Prototyping Based Requirements Elicitation 47

Although MDA can generate the infrastructure code through transformations, it is
not good at generating code for the dynamic aspects of the system. In order to speed
up the development process as well as improve the quality of the implemented proto-
type, a novel rapid program synthesis approach is used. The techniques involved in
the approach are MDA, AI planning, and component-based code synthesis, which are
organized in a hierarchy and seamlessly integrated together. The top level is the PIM
of MDA. PIM is specified using UML with OCL. It presents planning problems to the
underlying automated planning system (APS), which is located in the middle of the
hierarchy. Based on the planning problem, the AI planner in the APS generates a
procedural plan, in which its underlying components are chosen and organized to
achieve the given goal. The generated plan is then fed to the component-based syn-
thesis system that is located at the lowest level. The final code is then generated by
the code synthesis system. The developers only need to focus on the incomplete parts
where the planner cannot find a suitable solution. This can alleviate the developers’
burden and increase the development speed and reliability of the system. Section 3
discusses the details of the novel rapid program synthesis approach.

After the system is complete, users can visually operate it and formulate new re-
quirements to cope with any problems. These will be fed back to the requirements
engineers and the development cycle is repeated.

3 Rapid Program Synthesis

In our proposed evolutionary prototyping approach, rapid program synthesis tech-
nique plays a critical role. It ensures that the prototype is built in a timely manner and
with production quality.

Infrastructure
Code

Generated
Business Code

Manually
Composed Code

MDA

AI planning and
Component-

based Synthesis

Developers

Final Code

Fig. 2. Ways to obtain the final code

Fig. 2 shows how the final codes are obtained. The infrastructure codes (static as-
pects of the system) are generated by MDA through transformation. The AI planning
and component-based synthesis method can generate business codes, which constitute
the behavioral aspects of the system. The parts that cannot be generated automatically
have to be implemented manually.

In Section 3.1, we introduce how MDA helps generate the infrastructural code
through transformation. In Section 3.2, we introduce how the dynamic aspects of the

48 J. Fu, F.B. Bastani, and I.-L. Yen

system are generated by the AI planning and Component-based synthesis approach.
Then, in Section 3.3, we discuss how to integrate the AI planning and component-
based synthesis approach with MDA so that both the static and some parts of the
dynamic aspects of the system can be automatically generated.

3.1 MDA

Model-driven architecture (MDA) has attracted considerable research interests and is
predicted to be the next generation software development method. MDA transforms
models written in one language into models in another language. The direction of
transformation is usually from high level models to low level models. Fig. 3 illustrates
the relationships between PIM, PSM, and codes. PIM is designed independently of
any implementation details. It comes at a higher level of abstraction. PIM is then
transformed into PSM, which is a domain specific model that relies on specific do-
mains and technology. In the final step, PSM is transformed into code. The main-
stream MDA tools, e.g., [8], support these transformations.

PIM

PSM PSM

CODE

CODE

… …

… …

… …

Fig. 3. Relationships between PIM, PSM, and code [9]

Person

ID: INTEGER
Role: STRING
FName: STRING
LName: STRING
…

CREATE TABLE Person
(
 ID INTEGER,
 Role VARCHAR(40),
 FName VARCHAR(40),
 LName VARCHAR(40),
 … …
)

PIM

Transformation

Fig. 4. Example of PIM to relational transformation

Transformation introduces automations in generating models and codes and, thus,
the productivity is increased greatly. For example, assume that a “surprise” test man-
agement system is proposed to be developed for the case study in [19]. The system
keeps track of the surprise test records of screeners. For a surprise test, the inspector
purposely introduces fake weapons into a normal bag as a test. If the screener misses
too many tests, he/she will be sent for training. This surprise test management system
can be used to illustrate the transformation-based prototyping approach. The PIM to

 Model-Driven Prototyping Based Requirements Elicitation 49

relational transformation can be fully automated by generating the corresponding SQL
clauses. Suppose that there is a database used to store users (screeners, inspectors, etc.),
test to be conducted, test history, etc. For example, the PIM “Person” is defined as
shown in Fig. 4. The attribute “Role” is used to distinguish inspectors and screeners.

It is very natural to do the transformation from PIM to its relational counterpart
automatically through transformation. However, transformation is only good at gener-
ating code related to the static aspects of the system, i.e., infrastructure code. For
example, Fig. 5 shows the transformations between PIM and PSM and between PSM
and code. J2EE technology is used in this example to illustrate the idea. The PIM
model “Person” is transformed into three PSM models tailored to fit within J2EE
specifications. The PSM models (EJBs) are in turn transformed into code. We call the
code as the infrastructure code because it only contains static code frames and/or
getter/setter methods. The business code is absent from the transformation.

Person

ID: INTEGER
Role: STRING
FName: STRING
LName: STRING
…

PIM

Transformation

<<EJBObject>>
Person

<<EJBHome>>
PersonHome

import javax.ejb.*;
import java.rmi.RemoteException;
public class PersonBean implements EntityBean {

public String ejbCreate ()throws CreateException,
 RemoteException{}
public String ejbFindByPrimaryKey (String key){
}
… …

}

Transformation

PSMs

Infrastructure code

<<EntityBean>>
PersonBean

ejbCreate()
ejbFindByPrimaryKey()
 … …

Fig. 5. Example of PIM to PSM and PSM to code transformations

To overcome the limitation of the transformation method, the concept of “hetero-
geneous models” [27] is introduced to empower MDA to generate business code. In
this type of model, PIM and PSM are still specified with the original modeling lan-
guage. Code segments written in low level languages are embedded in the appropriate
parts of the high level components. The major advantages of this model are that exist-
ing codes can be reused and business code can be generated. However, this model has
many disadvantages,

• The heterogeneous models mix high level models and low level code seg-
ments together and make the design difficult to understand.

• The heterogeneous models exacerbate maintenance difficulty because the
changes in the high level models may lead to changes in the embedded code

50 J. Fu, F.B. Bastani, and I.-L. Yen

segments. If the high level models are designed to be transformed to differ-
ent platforms, code segments achieving the same functionality but support-
ing different platforms need to be added.

• The heterogeneous models neutralize MDA’s benefits of portability and
documentation.

In this sense, it is desirable to have a program synthesis technique that is not tightly
coupled with the high level models and would not affect the benefits of MDA. Our AI
planning and component-based synthesis method discussed in Section 3.2 can achieve
this goal.

3.2 AI Planning and Component-Based Synthesis

Raising the level of abstraction and increasing the level of reuse have been proven to
be the right way to develop software systems [22]. Our AI planning and component-
based code synthesis approach closely follows this principle by integrating AI plan-
ning techniques with Component-Based Software Development (CBSD) methods.
Specifically, AI planning is a problem solving technique that works on high level
abstractions of actions. The problem solving process is declarative, i.e., users only
need to focus on specifying the initial and goal conditions and the AI planner helps
generate a plan leading the system from the initial state to the goal state.

Another reason that makes AI planning appealing is that it can overcome some
limitations of the deductive code synthesis method [20], which was once regarded as
the answer to code synthesis. Similar to AI planning, deductive code synthesis also
enables users to work on high level specifications. Code can be generated as a by-
product of the proof by the theorem prover. The first limitation is that the deductive
code synthesis process may not terminate. Actually, this is a problem inherent in any
deductive methods [29]. When the theorem prover runs longer than expected, it is not
possible to infer whether no solution exists or whether the prover needs more time to
finish the proof. The second limitation is that it is difficult for the deductive code
synthesis methods to generate loop constructs. Even a short iterative program has
been proven to be difficult to reason about [12]. The FIP planner is not subject to
these limitations. FIP enhances classical Graphplan [1], which is guaranteed to termi-
nate regardless of whether a plan exists or not. Also, FIP is designed to support the
generation of loop and conditional constructs in its procedural plans. All of these
make FIP a full-fledged technique for automated code synthesis.

To increase the level of reuse, CBSD techniques can be used to achieve the goal.
CBSD is designed to use existing software components as building blocks to con-
struct larger applications. This approach can help lower the overall development cost
and reduce the development time. However, software developers face a steep learning
curve to grasp under what conditions the components can be used, the ways the com-
ponents can be composed together, and all the constraints on the usages of the com-
ponents. The code pattern technique [13][14] is designed to overcome the problems
facing CBSD and is applied to our automated code synthesis approach.

In Section 3.2.1, we briefly introduce the background knowledge of AI planning
and the FIP planner. In Section 3.2.2, we introduce the CBSD approach using code
patterns. In Section 3.2.3, we discuss how to integrate FIP and code patterns together
to achieve automated program synthesis.

 Model-Driven Prototyping Based Requirements Elicitation 51

3.2.1 FIP
We first briefly define the terminologies that are used in this paper.

Definition 1 (Action). Traditionally, an action in AI planning is defined as a triple, a
= 〈pre(a), add(a), del(a)〉, where pre(a) is the precondition of the action a; add(a) is
the post-condition achieved by the action a; and del(a) is the delete effect that is no
longer valid after the execution of the action a.

Definition 2 (Planning Problem). A planning problem is defined as a triple P = 〈s0,
g, O〉, where s0 is the initial condition of the planning problem; g is the goal to be
achieved; and O is a set of actions.

Definition 3 (Plan). Given a planning problem P = 〈s0, g, O〉, a plan is a sequence of
actions 〈a1, a2, …, an〉 that leads the system from the initial condition s0 to the goal
state g.

The reason that we have developed our own AI planner instead of using existing
techniques is two-folds. First, existing planning techniques are not sufficiently ex-
pressive. The majority of AI planners are limited to deterministic domains and deal
with only sequential planning, i.e., the actions in the generated plan are organized in a
sequential manner. These planners are called classical planners. Each action is deter-
ministic, i.e., the application of the action brings the system from the current state to a
single other state. For example, a robot uses its arm to move a block from position A
to position B. For classical planners, the effect of this action can always be predict-
able. As long as the robot can hold the block, it will definitely move the block to the
expected destination. However, in reality, due to mechanical constraints, the robot’s
arm may drop the block during the moving process. Therefore, classical planning
techniques make some impractical assumptions about the real world. For requirement
elicitation, [11] points out that requirements engineers tend to set up goals and make
some assumptions that are too idealistic. These assumptions are either not achievable
or are very likely to be violated. Hence, to model the real world with more precision,
it is desirable to require AI planners to be able to deal with nondeterministic actions.

Second, some efficiency and scalability problems have been reported for existing
AI planners. There have been research works on nondeterministic planning domains,
in which actions can have multiple nondeterministic effects. MBP [3] and Kplanner
[12] are two such examples. However, as reported in [10], the CPU time of MBP may
grow exponentially as the size of the planning problem grows. Kplanner suffers from
the scalability problem due to its inherent mechanism of trying different loop bounds
to generate the final plan.

Based on these reasons, we have developed FIP that can deal with nondeterministic
actions and achieve highly efficient planning. FIP is based on planning graph [1]. It
decomposes a nondeterministic action into a set of classical actions and conducts the
planning process in two phases. In the first phase, a weak plan [3] is generated. The
plan is weak because it only indicates one possible path leading to the goal. In this
plan, only the ideal situations generated by actions are included. It is actually the
optimistic shortest path leading to the goal. Based on this weak plan, FIP deals with
the effects that are omitted in the first phase and generates a complete plan in the
second phase. The search for a complete plan is conducted based on the shortest path
along the weak plan. Hence, the overall search distance is optimal. In addition, the

52 J. Fu, F.B. Bastani, and I.-L. Yen

planning graph is not a complete state space. It only contains states that are derivable
from the initial conditions. Thus, the search space is much smaller than those of MBP
and Kplanner. All these factors have made FIP a powerful and efficient planner quali-
fied for dealing with practical problems.

3.2.2 Code Pattern

Definition 4 (Code Pattern). A code pattern cp is a named functional unit that cap-
tures the typical structure and composition of a set of components. cp is represented
by a triple cp = (i, b, c), where cp is the pattern name, i is the interface, b is the body,
and c is a pair of pre- and post-conditions {P, R}. The functionality of a pattern p can
be represented as {P}cp{R}.

NAME GetJDBCDBConnection
INTENT Establish the connection with the database
CONTEXT JAVA/JDBC
SOLUTION 1. Load JDBC driver; 2. Establish the DB connection

CODE
TEMPLATE

Code_template
 Interface
 IN: String driver;
 String dbURL;
 String userName;
 String pwd;
 OUT: Connection con;
 End_interface
 Body
 try {
 Class.forName(driver);
 } catch(java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(e.getMessage());
 }

 try {
 con = DriverManager.getConnection(dbURL, userName,
 pwd);
 } catch(SQLException ex) {
 System.err.println("SQLException: " + ex.getMessage());
 }

 End_body
 Constraint
 Pre: Known(driver) and Known(dbURL) and
 Known(userName) and Known(pwd)
 Post: Known(con)
 End_constraint
End_code_template

Fig. 6. Code pattern example for JDBC

For example, in the surprise test management system, database operations for stor-
ing, retrieving, and managing screeners’ records are necessary. Code patterns can be
used to capture the typical usages of the JDBC components as well as their interac-
tions. In Fig. 6, a simple code pattern about how to obtain a JDBC DB connection is
defined. A code pattern consists of an interface, a pattern body, and a constraint sec-
tion. The pattern interface contains pattern parameters which are used to customize
the pattern. Pattern parameters are also called ports. Three types of ports are possible,
namely, input ports, output ports, and input/output ports. An input port is a data

 Model-Driven Prototyping Based Requirements Elicitation 53

source, an output port is a sink, and an input/output port can be either a source or a
sink depending on the pattern context. For this particular example, there are four input
ports and one output port. The precondition specifies the condition under which the
code pattern can be applied while the post-condition indicates the effect achieved
after the execution of the code template body.

Four code pattern composition operations, including one instantiation operation
(Map) and three functional operations (Concatenate, Invert, and Splice) have been
formally defined for glue code synthesis. The instantiation operation, map, is used to
instantiate a pattern to obtain a concrete code segment. For example, “driver =
sun.jdbc.odbc.JdbcOdbcDriver; dbURL = jdbc:odbc:AirTravel; …” can be used to
instantiate the code template in the code pattern body in Fig. 6 to obtain a segment of
concrete code. The concatenate operation is used to connect two or more code pat-
terns together sequentially to form a flow of data or actions. The invert operation
obtains a code pattern that performs the inverse operation of the original pattern. The
splice operation joins two code patterns together according to their internal loop con-
structs. It interleaves the internal code of the two code patterns and merges code
frames inside the loop constructs.

The code pattern approach is especially attractive for large enterprises because they
may already have a substantial repository of existing software systems and, hence,
seldom need to construct a new system from scratch. Code patterns can be used to
record typical usages of code segments that have been proven to be correct and are
repetitively used in the system construction. This kind of reuse is an effective way to
save cost and time. When the number of code patterns grows large, they can be organ-
ized in a code pattern repository for future use.

3.2.3 The Integration of AI Planning and Code Pattern
As discussed above, the integration of AI planning and code pattern can raise the level
of abstraction and increase the level of reuse in system construction. As shown in Fig.
7, the AI planning and code pattern based automated synthesis system consists of two
major parts, namely, the prototype Code Pattern Integration System (CPIS) [14] and
the Automated Planning System (APS).

The CPIS at the top portion of Fig. 7 consists of a code pattern repository, a
graphical user interface, a code pattern parser, and a code pattern composer. The code
pattern repository stores all the code patterns. The GUI interface is presented to en-
able the system users to add, retrieve, and edit code patterns from the repository. The
code patterns in the repository come from two major sources, i.e., patterns that are
input from the GUI interface and the composite patterns generated by the code pattern
composer.

The code pattern parser is responsible for checking the validity of the code tem-
plate. It is implemented based on JavaCC and supports multiple programming lan-
guage grammars, e.g., C++, JAVA, etc. The errors in the code template of the code
pattern can be detected when it is loaded into the CPIS.

The code pattern composer supports the pattern operations, namely, map, concate-
nate, invert, and splice, to compose code patterns. The system users work on the code
patterns in the repository and use the pattern operations to compose composite pat-
terns to achieve semi-automated synthesis of the glue code. The productivity would
be increased greatly if the code pattern operations can be automated.

54 J. Fu, F.B. Bastani, and I.-L. Yen

 Pattern
 Repository

Synthesized
Code/

Composite
pattern

Planning
parameters

Plans

Adapter

Planning
Domain

Generator

FIP

CPIS

Composer

Pattern
parser

Composition
Rules

APS

User
Interface

Fig. 7. Architecture of the code synthesis system

The automated planning system (APS) at the bottom portion of Fig. 7 is the core of
the whole code synthesis system and can achieve the goal of automating the code
pattern operations. It consists of three major parts, namely, planning domain genera-
tor, the FIP planner, and the plan adapter. As shown in Definition 4, a code pattern
has a constraint portion consisting of pre-/post-conditions. The formalism of code
pattern makes it naturally fit in the definition of AI planning actions. Hence, code
patterns are modeled as planning actions. The planning domain generator serves as
the bridge between code pattern repository and the APS and models code patterns as a
planning domain. [5] also presents details about how code pattern operations are
modeled in the planning system to facilitate plan generation as well as code synthesis.
Given a planning problem, the AI planner, FIP, works on the actions that are derived
from the code patterns and generates parameterized procedure-like generic reusable
plans, i.e., procedural plans. The procedural plans are translated into preprocessed
patterns by the plan adapter and fed to the code pattern composer to synthesize com-
posite code patterns.

It should be emphasized that this program synthesis system is not limited to code
patterns. The underlying components could be any components that can be abstracted
with pre/post-condition constraints. For example, web services are well suited to the
proposed architecture as shown in Fig. 7. The synthesis system is also an open system
in which different component-based synthesis techniques may exist together. In this
case, there will be multiple adapters for the AI planner to translate the generated plans
to different underlying systems.

The input to the program synthesis system as shown in Fig. 7 is the planning prob-
lem, which is defined as a triple P = (s0, g, O), where s0 is the initial condition, g is the

 Model-Driven Prototyping Based Requirements Elicitation 55

goal to be achieved, and O is the set of planning actions. As O is generated from the
code pattern repository by the planning domain generator, the users just need to spec-
ify s0 and g without having to know the details about how to achieve g.

3.3 The Integration of MDA and AI Planning and Component-Based Synthesis

As shown in Fig. 5, the code generated through transformation contains only code
structures, which include the definitions of classes and operations, and/or the imple-
mentation of static getter/setter operations that are derived from the private attributes.
The dynamic aspects of the system still remain to be completed. Therefore, we need a
technique that is able to generate business code and complete some of the dynamic
aspects of the system.

On the other hand, our AI planning and component-based code synthesis approach
can generate business code based on the underlying code patterns. If it is integrated
with MDA, it could greatly increase the productivity by generating the business code
for the system dynamics.

To conduct the integration, we analyze MDA and its modeling process. UML is the
de facto modeling language for MDA. However, UML is not good at modeling dy-
namic (or behavioral) parts [9]. The introduction of OCL 2.0 mitigates this problem
and provides more choices for constructing high quality models. OCL is a formal
modeling language that can be used to express conditions (pre-/post-conditions and
invariants) and build software models. It is defined as an assistant language for UML.
Hence, the combination of UML 2.0 and OCL 2.0 is the key to make the integration
successful.

Specifically, pre-/post-conditions on operations can be used to express the system
dynamics [9]. Formally, they can be expressed with a pair (P, R) representing the pre-
condition and post-condition, respectively. As discussed in Section 3.2.3, the input to
the AI planning and component-based code synthesis system is also a pair, (s0, g),
where s0 is the initial state and g is the goal. The similarity of the two pairs (P, R) and
(s0, g) strongly suggests that the constraints on the operations can be formulated as a
planning problem. Specifically, P is treated as the initial condition s0 and R represents
the goal g. The code synthesis system takes the input and generates the final code to
fill in the body of the operation if the planning problem is solvable. The generated
code is correct and is guaranteed to achieve the goal due to the following reasons:

(1) Code pattern is formally designed. Its functionality is expressed by the con-
straints, i.e., pre-/post-condition as shown in Definition 4.

(2) The code template in the code pattern is a proven solution to a recurring
problem.

The AI planning and component-based code synthesis system tries to generate
code for each operation based on its pre-/post-conditions. As shown in Fig. 2, the final
code comes from three sources, namely, MDA, automated code synthesis system, and
the developers. The multiple ways to automate the code synthesis could greatly speed
up the development process and make the proposed prototyping method more practi-
cal. Moreover, the generated code (from MDA and code synthesis system) is correct
and has good quality. This is another favorable factor for the proposed rapid evolu-
tionary prototyping approach.

56 J. Fu, F.B. Bastani, and I.-L. Yen

3.4 Analysis

Our rapid program synthesis approach (MDA + AI Planning + Component-based syn-
thesis) has the same advantages as the heterogeneous models [27] discussed in Section
3.1, i.e., reuse the existing code to achieve the business code generation. However, our
method is not subject to the disadvantages of the heterogeneous models.

First, the rapid program synthesis approach is not coupled with any high level
models and does not hurt the MDA hierarchy. MDA, AI Planning, and component-
based synthesis techniques can be seamlessly integrated together. Second, our ap-
proach does not complicate the maintenance process. The change of high level models
will not result in maintenance burdens. Code can be regenerated along with the infra-
structure code when the transformations are executed between different levels. Third,
the rapid program synthesis approach does not hurt the MDA’s benefits of portability
and documentation. The generation of system dynamics is parallel in the transforma-
tion between PIM to PSM and from PSM to infrastructure code. In addition, the rapid
program synthesis approach does not make any changes in the PIM. Thus, the PIM
can still fulfill the function of high-level documentation that is needed for any soft-
ware system [9].

4 Requirements Elicitation Via Prototyping

Based on the aforementioned advanced rapid program synthesis technique, we propose
a prototyping approach that is intended to combine the advantages of the rapid and
evolutionary prototyping. The rapid program synthesis technique ensures that the pro-
totype can be developed rapidly and with good quality. In addition, the proposed proto-
typing approach implements the requirements regardless of whether they are poorly
understood or well understood. In other words, the proposed approach will not be sub-
ject to the limitations of classical rapid prototyping and evolutionary prototyping.

Although the rapid program synthesis approach discussed in Section 3 can rapidly
generate the correct code, it cannot generate a complete system fully. Manually com-
posed code accounts for a certain portion in the prototype as shown in Fig. 2. In order
to ensure that this portion of code does not compromise the prototype’s quality, we
apply a technique, baseline, that is similar to the operational prototyping approach [4].
A baseline corresponds to a well built prototype, in which the software is developed
with production quality and only well understood requirements are included.

For the well-understood requirements, the standard MDA development cycle [9]
(as shown in the left portion of Fig. 8) is followed to implement these requirements in
a high quality manner. This is equivalent to the evolutionary prototyping. Then, a
baseline is set up to record that the implemented prototype is of production quality.
There is no poor quality code in the prototype within the baseline.

In the next step, the end users are trained to operate the prototype. This process
may inspire them to clarify some of the unclear requirements or to come up with new
requirements. The users may also experience some problems. All of these observa-
tions will be collected and sent to the requirements and design engineers.

 Model-Driven Prototyping Based Requirements Elicitation 57

Requirement
engineer

Developer/
Designer

End user

Requirement

Design

Coding

Testing

PIM

PSM

Code Prototype
with baselines

Fig. 8. Rapid evolutionary prototyping

For requirements that are critical but poorly understood, the throwaway (rapid)
prototyping method is applied to implement them over the baseline. The implementa-
tion should be done as quickly as possible to illustrate the functionality to the users.
After the users have identified the true requirements from the quick-and-dirty proto-
type, the portion that is not included in the baseline will be thrown away. The cost is
not too high as the traditional throwaway prototyping is because the rapid program
synthesis approach can help generate code to speed up the development. The auto-
matically generated code is much cheaper than code that is manually composed.

Then, the MDA development cycle is repeated and the newly identified and well
understood requirements are implemented with good quality to set up the next base-
line. Afterwards, the implemented prototype is sent to the users again and the same
processing steps are repeated if needed.

4.1 Discussion

With the rapid program synthesis technique presented in Section 3, the throwaway
prototype over the baseline can be implemented quickly. Although the generated code
is correct, it may not produce the desired effect because the requirements themselves
may not be correct. The code generated based on the incorrect requirements are not
valuable and must be discarded.

The proposed rapid evolutionary prototyping approach has some similarities with
operational prototyping, e.g., the use of baselines, the way of handling poorly under-
stood requirements, etc. There are also some major differences. First, operational
prototyping uses conventional development strategies to implement requirements that
are well understood. In contrast, the proposed approach applies the MDA develop-
ment strategy, in which the design becomes part of the development and more stake-
holders (software, design, and requirements engineers, etc.) are actively involved in
the development process. The development focus has shifted from code to PIM,
which is a higher level of abstraction. The artifacts that are created during the devel-
opment process are models.

Second, our rapid program synthesis technique makes the proposed prototyping ap-
proach a practical method for requirements elicitation. It greatly speeds up the devel-
opment process and ensures the quality of the generated code. The development cost

58 J. Fu, F.B. Bastani, and I.-L. Yen

can be reduced as well. This is especially true for implementing poorly understood
requirements. The code of the quick-and-dirty prototype would be discarded after the
requirement elicitation. But the development cost of the automatically generated code
is relatively cheaper than that of the manually composed code. If the generated code
accounts for a large portion of the prototype, it implies that the cost can be greatly
reduced.

4.2 Example

We still use the “surprise” test management system as an example to illustrate how
the proposed prototyping approach works. As shown in Fig. 9, the surprise test man-
agement system consists of three subsystems, namely, user management, test man-
agement, and analysis subsystems.

The user management subsystem is a conventional information management sys-
tem, which includes the major use cases of “add”, “edit”, “retrieve”, and “delete” users.
The requirements regarding the user management subsystem are well understood.

The test management subsystem is the key part of the system. It includes the major
use cases of “test generation”, “record test results”, “retrieve tests”, and “decision
making”. The requirements regarding this subsystem are not completely clear. Spe-
cifically, the users may have conflicting requirements about test generation. They
cannot make an agreement about how screeners are chosen for the test and how in-
spectors are identified to conduct the test.

The analysis subsystem includes the major use cases of “report generation”, “re-
cords evaluation”, and “trend analysis”. This subsystem is supposed to use the data
mining technologies to implement the requirements. But the specific requirements
regarding this subsystem are poorly understood as well. The users still do not have a
clear idea about exactly what kind of reports needs to be generated and how the series
of results could help in trend analysis.

The proposed prototyping approach implements the system in the following steps.
First, the well understood requirements are implemented. Hence, the user manage-
ment subsystem and part of the test management subsystem (e.g., record test results,
retrieve tests, and decision making) are implemented in a quality manner. As the im-
plementation relates to conventional database application development, abundant
code patterns that capture the typical usages of JDBC and other database related op-
erations exist for facilitating the code generation. A baseline is set up for the proto-
type indicating the completion of the well understood requirements.

Then, the users can operate the prototype and the problems found are collected. As
the test generation function is absent from the prototype, the users cannot have a
complete experience about the overall system. Hence, the test generation is critical
but poorly understood. It is implemented by using the rapid (throwaway) prototyping
strategy to illustrate its functionality over the baseline. In the prototype, the screeners
are chosen at random for the test and the inspectors are identified in a round robin
manner from the set of available candidates whose schedules are clear at the time
when the test is supposed to be conducted.

 Model-Driven Prototyping Based Requirements Elicitation 59

Fig. 9. Surprise test management system use case

Suppose the users reach an agreement after operating the prototype. They agree
that the screeners who are most likely to fail the test should be chosen for the test and
the way of identifying inspectors in the prototype is considered acceptable. After the
requirements become clear, the part that is not included within the baseline is dis-
carded, including the code for the inspector identification. Afterwards, the MDA
development cycle is followed to implement the newly clarified requirements with
good quality. Machine learning technique, e.g., Markov Decision Processes (MDPs)
[26], can be used to predict which screeners are more likely to fail the test. Code pat-
terns are available for solving the typical recurring problems in the MDPs area. The
rapid program synthesis approach can help accelerate the prototype development.
Then, another baseline is created and the prototype is sent to the users again.

For the analysis subsystem, the users can hardly come up with concrete require-
ments before they really touch the system and have the historical data available. This
is especially amenable to the prototyping approach. After the prototype is in good
shape to achieve the design goals for test management, the users will have better un-
derstandings about what they really need. The clarified requirements are incremen-
tally fed back and implemented with the help of the proposed prototyping approach.

60 J. Fu, F.B. Bastani, and I.-L. Yen

5 Conclusions

It is estimated that to fix a defect found during requirements engineering costs two
orders of magnitude less than to fix the same defect after the product has been deliv-
ered [2][18]. This asserts the essential role of requirements engineering in the software
development process. Software prototyping is an important requirements elicitation
technique that can help find defects at an early stage and, thus, make the project more
likely to succeed.

We have proposed a model-driven development based prototyping approach for re-
quirements engineering. It inherits the advantages of prototyping elicitations without
the disadvantages, such as untraceable requirements and tendency of reusing previ-
ously written code fragments, etc., by applying model-driven development principles
and advanced program synthesis techniques, in which MDA, AI planning, and compo-
nent-based software development techniques are seamlessly integrated together. The
proposed approach is a rapid evolutionary process that iteratively refines the require-
ments, design, and implementation and yields high quality systems with the help of the
novel rapid program synthesis technique.

References

1. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelli-
gence 90, 281–300 (1997)

2. Boehm, B.: Industrial software metrics top 10 list. IEEE Software 4(5), 84–85 (1987)
3. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic planning

via symbolic model checking. Artificial Intelligence 147(1–2), 35–84 (2003)
4. Davis, A.: Operational prototyping: A new development approach. Software 9(5), 70–78

(1992)
5. Fu, J., Bastani, F.B., Yen, I.: Automated AI planning and code pattern based code synthe-

sis. In: ICTAI 2006, pp. 540–546 (2006)
6. Fu, J., Bastani, F.B., Ng, V., Yen, I., Zhang, Y.: FIP: A fast planning-graph-based iterative

planner, Technical Report. UTDCS-03-08, UT-DALLAS (2008)
7. Harmain, H.M., Gaizauskas, R.: CM-Builder: A natural language-based CASE tool. Jour-

nal of Automated Software Engineering, 157–181 (2003)
8. http://www.andromda.org/
9. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Prac-

tice and Promise. Addison-Wesley, Reading (2003)
10. Kuter, U., Nau, D.: Forward-chaining planning in nondeterministic domains. In: Proceed-

ings of the National Conference on Artificial Intelligence (AAAI-2004), pp. 513–518
(2004)

11. Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements engineering.
TSE 26(10), 978–1005 (2000)

12. Levesque, H.: Planning with loops. In: Proc. of the IJCAI 2005 Conference, Edinburgh,
Scotland (2005)

13. Liu, J., Bastani, F.B., Yen, I.: Code Pattern: An approach for component-based code syn-
thesis. In: Proceeding of the 7th World Multiconference on Systemics, Cybernetics and In-
formatics, Orlando, FL, pp. 330–336 (2003)

 Model-Driven Prototyping Based Requirements Elicitation 61

14. Liu, J., Bastani, F.B., Yen, I.: A formal foundation of the operations on code Patterns. In:
The International Conference on Software Engineering and Knowledge Engineering,
Taipei, Taiwan, Republic of China ((2005)

15. Luqi: Knowledge-based support for rapid software prototyping. IEEE Expert 3(4), 9–18
(1988)

16. Luqi: Software evolution through rapid prototyping. Computer 22(5), 13–25 (1989)
17. Luqi, Berzins, V., Yeh, R.: A prototyping language for real time software. IEEE Transac-

tions on Software Engineering 14(10), 1409–1423 (1988)
18. Luqi, Guan, Z., Berzins, V., Zhang, L., Dloodeen, D., Coskun, C., Pueett, J., Brown, M.:

Requirements document based prototyping of CARA software. International Journal on
Software Tools for Technology Transfer 5(4), 370–390 (2004)

19. Luqi, Kordon, F.: Advances in Requirements Engineering: Bridging the Gap between
Stakeholders’ Needs and Formal Designs. In: Paech, B., Martell, C. (eds.) Monterey
Workshop 2007. LNCS, vol. 5320, pp. 15–24. Springer, Heidelberg (2008)

20. Manna, Z., Waldinger, R.: Fundamentals of deductive program synthesis. IEEE Transac-
tions on Software Engineering 8(18), 674–704 (1992)

21. Mcclendon, C.M., Regot, L., Akers, G.: The Analysis and Prototyping of Effective
Graphical User Interfaces (October 1996)

22. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven Ar-
chitecture. Addison-Wesley, Reading (2004)

23. Nuseibeh, B., Easterbrook, S.: Requirements engineering: A roadmap. The Future of Soft-
ware Engineering. In: 22nd International Conference on Software Engineering, pp. 35–46.
ACM-IEEE (2000) (special issue)

24. Object Management Group: MDA Guide: Version 1.0.1, OMG document omg/03-06-01
(2005)

25. Overmyer, S.L.V., Rambow, O.: Conceptual modeling through linguistics analysis Using
LID. In: 23rd international conference on Software engineering (2001)

26. Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)
27. Selic, B.: Model-driven development: Its essence and opportunities. In: 9th IEEE Interna-

tional Symposium on Object and component-oriented Real-time distributed Computing
(ISORC), pp. 313–319 (2006)

28. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software Develop-
ment: Technology, Engineering, Management. John Wiley, Chichester (2006)

29. Stickel, M.E., Waldinger, R.J., Chaudhri, V.K.: A Guide to SNARK (2005),
 http://www.ai.sri.com/snark/tutorial/tutorial.html

30. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA. Addison-Wesley, Reading (2003)

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 62–84, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Case for ViewPoints and Documents

Michael Goedicke1 and Thomas Herrmann2

1 Specification of Software Systems, ICB, University of Duisburg-Essen, 45117 Essen,
Germany

2 Institute of Applied Work Science, Ruhr-University of Bochum, 44780 Bochum, Germany
goedicke@s3.uni-due.de, thomas.herrmann@rub.de

Abstract. In this contribution we consider various sorts of vague and imprecise
pieces of (requirements) specification information as different view points pro-
vided by different stakeholders. Usually there is an obvious “non convergence”
in the stakeholders’ views and it is important to address the various sources of
ambiguity and inconsistency between such view points. We advocate address-
ing not only “traditional” inconsistency to drive development forward but in-
clude other forms of imprecision like ambiguity and vagueness. The aim is to
provide a path from a decentralized viewpoint-oriented style to a document-
oriented style of software requirements specification. We use parts of the air-
port security case study to show aspects of our approach.

1 Introduction

Usually many stakeholders are involved in software development processes to define
the requirements from various points of views. Various research approaches address
the consistency problem arising in such a context since the various partial specifica-
tions contained in a set of viewpoints are not consistent from the start. However, an
area, which also needs to be addressed in such a context, is an additional notion of
imprecision: ambiguity and lack of complete knowledge.

If it becomes apparent that a stakeholder is not able or willing to specify a certain
situation or constellation, it is very helpful to record this fact in the specification. In
the airport security scenario such situations can be identified in various parts of the
recorded conversation. For example, the sub-activities of the screening process are not
completely specified and it is not exactly clear what will happen if “the airlines are
not doing well”, or the list of measures to “increase security” is not complete (cf. fig.
2, 15, 16). The involvement of a number of different stakeholders in such a setting
implies that each stakeholder provides such imprecise specification statements by
uttering beliefs or his or her viewpoint. We have identified inconsistency in the view
point-oriented research (see e.g. [3]) as a major driving force which can reveal hints
on how to proceed in the software development process. We also argue here that deal-
ing with the discernable cases of imprecision, ambiguity and other related forms of
incomplete and potentially contradictory specification information provides support
for the formulation of important questions in the process of eliciting new aspects and
pieces of specification information from stakeholders. In this respect, ambiguity and
imprecision can be seen as a special sort of inconsistency.

 A Case for ViewPoints and Documents 63

This states the challenge we would like to address here: based on a representation
scheme for recording explicitly ambiguous and incomplete requirements specification
(SeeMe [8], [10]) we identify how SeeMe can represent different view points, and we
categorize how such combined pieces of information originating in different view-
points can be combined and reconciled with each other. Usually, SeeMe-diagrams are
used for the design of socio-technical systems (e.g. in the area of knowledge man-
agement) where formal structures (usually presented by technical components) and
informal aspects (e.g. conventions of the social system) are combined. Therefore,
SeeMe diagrams are developed in workshops where a facilitator’s questions are an-
swered by various stakeholders and continually documented by modifying the dia-
grams. Consequently, a single SeeMe-diagram can represent varying viewpoints.
However, this workshop-approach does not work in those cases where a huge number
of SeeMe-diagrams have been developed at several different locations and / or during
various periods of time. Under these conditions, it is reasonable to provide techniques
which automatically prepare a comparison of the varying viewpoints which are repre-
sented in a set of SeeMe-diagrams. For this purpose, SeeMe-diagrams have not yet
been used due to a lack of technical support. The process and techniques we propose
here lead to additional useful questions and development steps which serve as driving
forces, especially for the upstream activities of the software development process.

In the following we give a brief outline of the overall approach and a brief account
of the underlying ViewPoint concept for our work here. In addition the representation
scheme SeeMe is briefly described in particular its ways of defining various forms of
ambiguous and incomplete information. We then give a sketch of the necessary defi-
nitions for the various transformation steps, intermediate graph-based representation
schemes and graph- based transformations. Finally, we briefly compare our work with
existing approaches to ambiguity and incompleteness in specification. We conclude
our presentation with a brief look at research issues currently being pursued.

2 Expressing Ambiguity and Imprecision Using ViewPoints

We briefly sketch the overall process since we propose here a combination of various
concepts and techniques. As was pointed out above, we aim at increasing the usage of
explicit statements regarding imprecision and vagueness in early stages in (software
system) development processes. We assume here that the goal of the airline security
scenario is actually to create and deploy a system, which is not explicitly expressed in
the blog [13]. Thus, we assume that we see in the scenario of [13] the early stages of a
development process.

The overall approach addresses the problem that from the start a common under-
standing of the problem(s) at hand is by no means perfect. This was the starting point
of the research which led to the ViewPoint concept [2]. In the following we refer to
the specific notion of view point in this research as ViewPoint. The basic idea is that
relevant stakeholders express their view on the problem or given task in his/her repre-
sentation scheme following a local process model. While this is still a promising ap-
proach to capture diverging opinions and views, such a decentralized approach to
record relevant properties of a system under development induces the need to come
up with a consistent set of requirement specifications upon which all involved parties
can agree.

64 M. Goedicke and T. Herrmann

We believe that a decentralized approach is more realistic especially in large de-
velopment teams. However, the need to come up with a single consistent document is
also induced by management purposes and the nature of detailed technical software
development as well. Later we will sketch the process we employ here.

The starting point is to create a set of ViewPoints using the SeeMe-representation
scheme which specify the personal view of the stakeholders. We also assume here
that either the stakeholder or a trained consultant will provide the respective personal
ViewPoint. The overall process (see fig. 1) is divided into three stages. In stage one
the various stakeholders create (or had created) their respective ViewPoints using
SeeMe. These ViewPoints form the basis to discuss commonalities and differences.
This is the focus of stage 2 where some automated support helps to find common
parts and parts which differ in the ViewPoints. This is accomplished using appropriate
internal graph-based representations and transformations (see section 4). The presen-
tation of the common and different parts is then fed back to the stakeholders for fur-
ther discussion and development e.g. back to stage 1. This may lead to a converging
process which yields a consensus in the form of a common ViewPoint representing
the consensus between stakeholders. Some differences may still exist but are
considered unimportant for or irrelevant to further development. We argue to keep
them, however, since these manifestations of diverging opinions are possibly impor-
tant for future developments. They could also present the starting point for the discus-
sion of variants in a product line development. However, this is beyond the scope of
this paper and will be pursued as part of future work.

Once the common part represents the consensus among the stakeholders, a further
development stage can be entered. Thus in stage 3 in fig. 1 a more detailed presenta-
tion of the common ViewPoint has been created from the SeeMe representation. This
is again done by appropriate transformations. Depending on the degree of detail con-
tained in the SeeMe representation, additional input from a moderator, consultant or
stakeholder might be necessary to accomplish progress to stage 3.

In contrast to the original ViewPoint concept, we consider here – at least for the up-
stream development activities of stages 1 and 2 – only SeeMe as single representation
scheme. This removes complexity for the presentation here and allows us to focus on
the problem of representing vagueness and imprecision at the level of ViewPoints.

The ViewPoint approach [2] is helpful in analyzing the situation sketched in the
case study. The stakeholders’ view is presented using ViewPoints and given an ap-
propriate representation scheme – first order logic e.g. xlinkit [15] or temporal logic
will certainly fulfill the task – inconsistencies can be made explicit. However, this is
only the starting point.

As was put forward in [17], emphasis has been put on living with inconsistencies
and providing some repair actions if possible. The overall processes involving View-
Points and related global properties (like convergence i.e. removal of inconsistencies)
have to be elaborated and refined. If one regards requirements engineering in particu-
lar as a set of continuous activities parallel to creating other development artifacts, it is
an important goal to integrate a document-oriented approach into the otherwise distrib-
uted views (c.f. stage 3 in fig. 1.). Thus the challenge is to integrate document centric
views – in many cases expressed today in some UML dialects or sublanguages – with
more interaction centric and decentralized views as represented by the blog of the three
stakeholders of the case study.

 A Case for ViewPoints and Documents 65

Security

Screenin.

...

SeeMeeTSA

Security

Screenin.

?

SeeMeeFAA

Security

Screenin.

SeeMeeASEC
Security

Screenin.

SeeMee

Security

Screenin.

SeeMee

?

Security

Screenin.

SeeMee

?

Security

Screenin.

Usecase

Security

Screenin.

Classdiag.

agreed model

open issues fed back

open issues fed back

Stage 1
Preparation of individual
ViewPoints using SeeMe

Stage 2
Comparing and Factoring out
Commonalities and Differences

Stage 3
Further detailed Specification
and Design

denotes Information
Flow between
ViewPoints

Fig. 1. Sketch of the overall Process

While much of our work was concerned with the first type of integration and in-
consistencies, the latter is quite important. Earlier work [19] suggests that this is pos-
sible by modeling the involved layers (organization, informal relationships etc.) but
additional results can be achieved if other forms of imprecise information are repre-
sented as well.

A contribution to this goal is to present vagueness explicitly as in the SeeMe ap-
proach [8], [10]. The characteristic of the diagrammatic SeeMe approach is to intro-
duce explicit graphical elements in order to indicate ambiguities, vagueness or other
type of imprecision.

Below we present the SeeMe representation scheme in more detail and then discuss
the process of finding common and different parts of a SeeMe based ViewPoint.

3 Stating Ambiguous and Imprecise Specification Information:
The SeeMe – Notation

SeeMe has been developed to mainly support the communication during the early
phases of requirements engineering. It is based on communication theory which sug-
gests that communicators only make explicit what is not already obvious by their
context [11]. Therefore a modeling notation which represents a rich variety of aspects
must allow the modeler to focus on the essential aspects. A design-oriented notation
must not enforce the depiction of all details, as they are needed for context-free tasks

66 M. Goedicke and T. Herrmann

of programming, configuration or formulation of regulations. It must be possible to
represent incomplete or uncertain information and to indicate those aspects of a model
which are only incompletely specified. If misunderstandings are observed with re-
spect to this incompleteness, it can be gradually reduced by making the diagrams
more explicit and formal.

Therefore, for the early phases of designing socio-technical systems or processes it
is reasonable to use a modeling notation to create diagrams which

• visualize the complex interdependencies between people, between humans and
computers and between technical components

• can integrate overview sketches of the planned solution with the representation of
rich details if a contributor wants to introduce them. Subsequently, it is not neces-
sary to switch between different diagrams to see varying degrees of details

• integrate formal and informal structures as well as technical and social aspects
• handle incompleteness and vagueness (e.g. if it is not clear which sub-activities are

part of a task or under which conditions these sub-activities are carried out.)
• and represent conventions, interests and multiple perspectives.

The development of SeeMe was triggered by the experience that available methods
were not suitable to represent a combination of imprecisely as well as formally speci-
fied structures. We analyzed a set of common modeling methods for their appropri-
ateness for socio-technical systems ([5], [7], [14], [18], [20], [25]). SeeMe is inspired
by the extended-event-process-chain (eEPC) developed by Scheer [21], by use-case
diagrams [20] and by State-Charts [6]. We have combined aspects of these methods
and extended them with possibilities to express vagueness which includes incom-
pleteness and uncertainty. Vagueness in SeeMe is related to a qualitative lack of in-
formation and not to a quantitative measurement of the probability of the occurrence
or correctness of a certain modeling element.

SeeMe is designed to support communication. This being its main purpose, it is
closely related to natural language. It can mirror the imprecision and context depend-
ency which characterize the usage of natural language. SeeMe-diagrams can easily be
derived from natural language documents, by indicating the keywords which are to be
transformed into graphical elements. Figure 2 shows a tool, which supports this step.
The modeler has to indicate the keywords, arrange the elements geometrically and
connect them with relations.

Such a tool helps to incorporate the overall approach in a setting that starts with
natural language documents and derives and maintains the other requirements and
design artifacts incrementally. However, we will not pursue this here since we want to
concentrate on explicit representation of imprecision and vagueness.

SeeMe helps to describe the interaction between people and physical or technical
objects of the world, and therefore differentiates between three basic elements (see
fig. 2):

• Roles (e.g. airport screeners) which represent a set of rights and duties as they can
be assigned to persons, teams or organizations. Eventually, the characteristics of a
role are based on the expectations of other roles. These kinds of reciprocal rela-
tionships are typical for social systems – roles are a means to introduce social
aspects into the models.

 A Case for ViewPoints and Documents 67

Fig. 2. Transformation support from Text to SeeMe

• Activities (e.g. screening) which are (usually) carried out by roles and stand for the
dynamic aspects which represent change, such as the completing of tasks, func-
tions etc.

• Entities (e.g. new technical support) representing passive phenomena; e.g. re-
sources being used or modified by activities, such as documents, tools, programs,
items of the physical world. They can represent containers (e.g. a box, a ware-
house) or ephemeral phenomena (e.g. an utterance).

SeeMe offers nine standard relations depending on the types of elements being con-
nected and on the relation’s direction. Relations are depicted with directed arcs. They
have a starting- and an ending-point which are anchored in basic elements. The “read-
ing-direction” mirrors the direction of the arcs in the following exemplary definitions1:

• The role carries out [1] the activity;
• the activity influences [2] the role (e.g. the passengers);
• an entity (luggage) is used by [3] the activity;
• which produces or modifies [4] an entity (technical support);
• an activity is followed by [5] another one.

Relations can be connected to super-elements or to one of its sub-elements (that
means crossing the border of the super-element). If a relation is pointing to a super-
element, it is also referring to all of its sub-elements.

Relations can be incompletely anchored to elements: If it is not clear whether a
relation should be connected to the whole super-element or only to a subset of its

1 The numbers [1]-[5] in the explanation refer to the numbers labeling the related arcs in fig. 3.

68 M. Goedicke and T. Herrmann

Fig. 3. Basic elements of SeeMe

sub-elements (and then to which of them), the relation crosses the super-element
(increasing security) and is not connected to a distinctive sub-element. In the example
(fig. 3), it is apparent by the crossing relation that not every case of “giving an alarm”
leads to banning the passenger to take the liquid with him – the sub-activities which
lead to the decision are not displayed.

Relations can be left out, e.g. between sub-activities if it is not clear in which se-
quence they occur. While “giving alarm” and “banning” are in a sequence (fig. 3), this
is not the case with “letting it pass” and “giving an alarm”. An arrow can also start or
end in an undefined space if the element to which it is anchored is unknown or not
represented in the diagram – e.g. to indicate the need to collect further information.

If two or more relations are assigned to the same element with their starting- or
end-points, the question is how the interdependency between them can be described.
These kinds of dependencies are expressed with logical connectors. Typical logical
constellations are “or”, “xor” or “and”. However, the logical type of a connector can
be left unspecified if its meaning is clear from the context of a diagram or if it is not
reasonable to be more precise.

Segment lines are part of the notation with which one separates super-elements in-
to segments which help to cluster sub-elements or attributes according to different
perspectives. Different observers or stakeholders have different views of a system.
None of them can be complete. In some cases it can be sensible to represent these
different views in an integrated manner. Therefore, SeeMe allows a modeler to repre-
sent different perspectives of the decomposition of an element. Figure 3 shows the
perspective of the FAA on activities, which “increase security”. The perspective of
the TSA could be added to the same super-element by including more sub-activities,
which could then be separated by a segment line.

 A Case for ViewPoints and Documents 69

Fig. 4. Control vs. freedom of decision

If a connector represents a logical “OR” or “XOR”, the question arises of under
which condition a relation can be instantiated. In many cases, this decision can be
clearly derived from the context. If this contextual specification is not clear enough
for the relevant stakeholders, so called modifiers can be annotated (green hexagons
in figure 4). Modifiers can also be incomplete: they can be empty if we only know
that the instantiation of an element or relation depends on a condition but the condi-
tion is unknown or changes from case to case. A specific relevance has the usage of
this kind of incompleteness to express freedom of decision as shown by the second
case of figure 4. In the upper case, a workflow system decides whether a second
clerk (the numbers in brackets indicate that different persons should instantiate the
roles) will check the contract. In the second case, it is the clerk[1] who
decides whether a checking of the contract is reasonable or not. The condition is left
unspecified to express that it is specified ad hoc by the clerk[1].

SeeMe is constructed in such a way that it is flexible in both directions: it can be
used to express vague, informal structures and it can support formal specifications
which are similar to UML-activity diagrams, flow charts, eEPC [21] or Entity-
relation-diagrams.

How SeeMe is used
SeeMe diagrams are usually employed in facilitated workshops to conduct walk-
throughs. During these socio-technical walkthroughs (STWT, [9]), details of the dia-
grams are discussed and modified step-by-step. The facilitator has to prepare reasonable
steps as well as questions which guide the critical inspection and discussion of the dia-
grams. The purpose of the workshops is to bring different stakeholders together and to
integrate the varying viewpoints into one diagram which can serve as the large picture
of the constellations that have to be taken into account during the requirements analysis
and construction. It is obvious that the viewpoints of the participants can, for several
reasons, not be completely represented – therefore the STWT-diagram contains impre-
cision which can be indicated with the SeeMe-symbols as described above.

SeeMe has been employed in more than 12 practical projects to support require-
ments engineering, software development, training of software users, improvement of

70 M. Goedicke and T. Herrmann

processes, documentation of technically supported processes as reference models,
documentation of needs for adaptation and their realization, support of organizational
change. The projects took place in areas such as knowledge management for services
and manufacturing, printing industries, campus management and library software for
universities, production and distribution of photographs. The average number of dia-
grams per case is 11,5 for those diagrams that have more than 20 elements. The practi-
cal cases were interwoven with phases of scientific reflection. The main achievements
of this reflecting refer to the questions of how the diagrams can be used to support
facilitation and incremental improvement of socio-technical systems, and of how to
deal with imprecision.

There are different ways in which one can deal with incompleteness as it occurs in
SeeMe diagrams:

• Incompleteness can be retained if it is clear that all the participants of a project
know what is meant and were able to complete the missing data by themselves.
Vagueness will be eliminated during one of the following workshops when the
requirements construction has to be completed or when prototypes are available.

• Incompleteness will only be eliminated after the designed socio-technical system
has been brought into reality and has been tested for a while.

• Incompleteness remains a part of the socio-technical system since the basis to
overcome it changes from case to case so that decisions have to be made flexibly.

The main limits of SeeMe, which became apparent through empirical research where
workshops and interviews were conducted, were the lack of support for programming
and the readability of the diagrams by those individuals not supported by a facilitator.
Although the STWT-workshops are a convenient way to integrate the viewpoints of
several stakeholders, the situations where it can be used are limited for the following
reasons:

• Too many perspectives or too many representatives of a certain viewpoint have to
be taken into account (e.g. all the regional branches of a large company).

• The relevant stakeholders don’t have time to meet during a time consuming
workshop.

• It may be more advantageous if the diagrams are modeled in the immediate con-
text of a workplace where all the aspects which have to be taken into account are
co-present.

• Perspectives or diagrams may have to be taken into account, which have been
created in the past by interviewing stakeholders who are no longer available.

In these cases it is very helpful and reasonable to employ automatic mechanisms
which help to compare diagrams and help to extract the differences between them.
The differences can either refer to divergences between concrete specifications or to
cases where one stakeholder gives a detailed specification while another prefers to
stay incomplete or imprecise with respect to a certain issue. The next section (4) will
discuss how differing SeeMe-specifications can be compared.

Further perspectives
In the course of software development processes, SeeMe mainly provides support for
the communication between varying stakeholders during the early phases of require-
ments analysis. In most cases where SeeMe has been used, software-engineers have

 A Case for ViewPoints and Documents 71

used consolidated SeeMe-diagrams for either immediately starting with prototyping
or for manually creating UML-diagrams as a basis for the programming phases. It is a
part of ongoing research - but not a focus of this paper - to develop semi-automatic
mechanisms for transforming SeeMe-diagrams into more formal notations such as
UML-Activity-diagrams or BPEL specifications, or EPC (c.f. stage 3 in fig. 1). The
challenge here is to combine automatic transformation with the activities of a human
modeler to complete information and to eliminate vagueness which is included in the
SeeMe-diagrams.

4 Comparison of SeeMe Specifications

The basic idea to compare SeeMe specifications is to use the underlying graph-based
data structure of SeeMe specifications. We use the general graph comparison proce-
dure SiDiff [24], which uses two graphs to create a new graph. This graph contains
the two original graphs plus additional edges identifying common and different parts
of the original graphs. In fig. 5 we partially sketch the result of comparing two graphs.
The various graphs are obtained by a special export of the SeeMe – editor. The actual
tool chain we use will be explained below.

Graph of VP1 Graph of VP2 VP1 and VP2 compared (only

two “equal” nodes are shown)

Fig. 5. Graph Differencing

The various nodes in the graphs have attributes and types allowing the identifica-
tion of the elements of the corresponding SeeMe – diagram. In order to compute the
actual specification which represents the common part, and the representation of the
difference, we use the graph transformation tool AGG [22]. This tool offers powerful
transformation capabilities to select parts of a graph and modify it according to a set
of given rules. These rules define in a declarative way to manipulate a graph.

In our case we need a set of rules which extract common and different parts from
the SiDiff comparison result. These new graphs are then transformed into the repre-
sentation, which can then be used by the SeeMe-editor to visualize the result of the
comparison in terms of the SeeMe – representation scheme. These steps realize the
stages 1 and 2 of figure 1 above. An additional set of rules is needed to come up with
a derivation of new representations like Use Case descriptions etc. (stage 3 in fig. 1).

In detail the following steps are necessary:

1. Export of the involved SeeMe models as XML-files
2. Production of the difference of the XML-represented SeeMe models using SiDiff

72 M. Goedicke and T. Herrmann

3. Import of the compare-graph into the AGG – transformation system in addition to
the rule set

4. Application of the rules to extract the common part and the difference parts
5. Export of these parts in a SeeMe compatible format for further display

Later we will give more details of the procedure sketched above. In addition to
steps 1. to 5., some auxiliary processing is necessary in order to optimize the various
main comparison and transformation steps. We refer to the steps and involved tools
sketched above as the tool chain comprising the SeeMe-editor, SiDiff graph differ-
encing engine and AGG graph transformation system.

4.1 Comparison and Transformation Steps

This addresses the first two steps in the tool chain sketched above. The SeeMe-editor
provides an export of a SeeMe-model as an XML-file. This XML-format is a one-to-
one copy of the internal editor-data structure and contains all necessary data of a
model, including geometry and layout information. This kind of model-related infor-
mation, which is important for good tool usability, is not part of the semantics of
SeeMe as a notation. Since this layout related information disturbs the graph differ-
encing procedure, this part of the XML-file is removed. In a more sophisticated im-
plementation of our procedure we will not throw this information away but hide it in a
way (e.g. as a special attribute) so that it survives the transformation process. Later on
the layout information can be recovered and used to produce a good layout when the
SeeMe representation of the comparison and transformation result is displayed.

Fig. 6. Three simple SeeMe models

In order to show some details we use three simple2 SeeMe diagrams which are trans-
formed and compared. In figure 6, we see these simple models as SeeMe diagrams,
while in figure 7 the XML-representation of Model 1 is partially given (parts of the
XML-tree are hidden which is indicated by the “+”-sign at the respective XML-tag).

As can be seen in fig. 7, the elements of Model 1 (Role, Activity etc.) are repre-
sented as appropriate XML elements (e.g. <mBaseElement type=Role …>). There is

2 These diagrams are very simple. However, since the related XML-files and graphs become

very large with more realistic example specifications we will stick with such simple diagrams
for the purpose of the presentation here.

 A Case for ViewPoints and Documents 73

the section in the XML document which is given by the geometric tag below the
extension tag. This extension part is removed for the purpose of comparing the
XML documents. In addition there are so called somID, which are unique identifiers
for the elements of a model.

Fig. 7. XML representation of Model 1 of fig. 5 (some XML-Elements hidden)

Fig. 8. Result of comparing Model 1 with Model 2

74 M. Goedicke and T. Herrmann

In figure 8 we see the result of comparing Model 1 with Model 2. Again only a
part of the elements are shown but one can see that certain elements of the involved
graphs have been identified as equal. Comparing Model 1 with Model 3 yields the
result shown in figure 9 (SiDiff detects an update in the node Main Activity
although this is not necessarily an update in the traditional sense since it may have
arisen from parallel development and is simply unequal; but we will ignore this for
the time being).

Fig. 9. Result comparing Model 1 with Model 3

Based on this comparison result, further transformations can extract useful diagram
parts which are then reported back to the stakeholders. This can then be used to drive
the stakeholders’ discussion forward, making commonalities and differences explicit
at the diagram level. In figure 10, the AGG view [23] of the comparison result is
depicted and is a direct representation of the XML-file of fig. 9. This is transformed
using a simple set of rules into XML-files, which can be read in to the SeeMe editor.
It can directly depict the comparison result at the level of SeeMe models. Figure 15
shows this result.

In order to explain the transformation process in more detail, we have selected
some parts of the graph shown in fig. 10 which provides the entire graph as overview.
These parts are indicated by the labeled ellipses 1, 2 and 3. Basically, these parts
represent three kinds of sub graphs which can occur in the comparison result. Starting
from the root node (labeled with calculationResult) in part 1 (fig. 11) a node
(ComparedDocuments) identifies the compared documents (Document). This
provides the pointers to the original SeeMe diagrams.

In fig. 12, part 2 of fig. 10 is given. This shows the update-node of the result graph.
This identifies the two nodes in the SeeMe diagrams of Model 1 and Model 3 where
the activity name update has taken place.

In fig. 13, part 3 of fig. 10 is provided. This shows a node which identifies the
elements of the SeeMe diagrams Model 1 and Model 3 that have been identified by
SiDiff as equal. As one can see in fig. 10, SiDiff has identified most of the elements
of Model 1 and Model 3 as equal – which in this case of the constructed example is

 A Case for ViewPoints and Documents 75

Fig. 10. AGG screenshot representing the comparison result shown in fig. 9

not a surprise. However, the SiDiff procedure applied to the more complex SeeMe
specifications (fig 3, 16 and 17) show similarly good results and it is beyond the
scope of this paper to present them here.

Based on such structures it is straightforward to provide graph transformation rules
that use the comparison result of fig. 10, the graph representation of the two compared
SeeMe specifications and produce an actual arc between the nodes of the diagrams

76 M. Goedicke and T. Herrmann

identified as “equal” by the SiDiff procedure. In fig. 14, a sample rule is given which
creates an (double ended) arc between two elements of two diagrams. The notation
used in fig. 14 is not exactly the input format for the graph transformation tool AGG,
but comes close and only minor technical details have been left out to keep the pres-
entation simple. The nodes labeled Equal and Node are from the result graph, while
the nodes labeled mBaseElement are from the graphs of the two diagrams being
compared. The notation $1, $2 for the attributes ID and somID respectively defines
that the attribute values for ID and somID are variable but have to be identical at the
respective nodes.

As a result of applying such transformation rules as shown in fig. 14 a combined
diagram shown in figure 15 is obtained.

Fig. 11. Part 1 from fig. 9

Fig. 12. Part 2 from fig. 9

Fig. 13. Part 3 of fig. 9

 A Case for ViewPoints and Documents 77

Fig. 14. Rule creating links between “equal” – elements of two diagrams

Fig. 15. Comparison result at the SeeMe model level comparing model 1 and model 3 of fig. 6

The result seems to be trivial but this is due to the simple examples used here in
order to keep the overall presentation short enough. However, using the SeeMe dia-
grams representing some views of the Airport Security scenario also showed good
results. Further aspects of tuning the graph differencing process and the issues related
to the presentation of the comparison will be discussed later.

Once this state is reached the development process can be pursued using the various
specifications either by going back to stage 1 (c.f. fig. 1) where additional discussions
are performed to get more information regarding the project at hand, or by stepping
forward to stage 3 in which the agreed results are used to derive further specification
artifacts at a more detailed level towards a solution.

4.2 Comparison of Important SeeMe Fragments Regarding Ambiguity and
Imprecision

Looking at the case study [13], three stakeholders are involved. The FAA ViewPoint
is sketched in fig 3. The airport security agent’s ViewPoint is depicted in fig 16 and
the TSA’s perspective is given in fig 17.

78 M. Goedicke and T. Herrmann

Fig. 16. Airport Security Agent SeeMe ViewPoint

Fig. 17. Transport Security Agency’s SeeMe ViewPoint

The diagrams of fig 3, 16 and 17 were derived by the analysis of a text which rep-
resents a dialogue between the different roles. The key concepts and statements which
dealt with measures to improve security and the problems to be overcome were identi-
fied. In a further step it was decided whether to represent them as roles, activities or
entities or as a combination thereof. Relations were either derived from the text or
added if they were implicitly suggested by the meaning of the context. Symbols for
vagueness were used if the dialogue did not reveal the needed information or if it just
gave hints which pointed to further possibilities which were not explicitly explained.
Sometimes super-elements were added to cluster elements and to provide a better
overview (e.g. in fig. 16 to cluster “getting deterred”, “raising prices” etc.).

 A Case for ViewPoints and Documents 79

The pair-wise comparison of the diagrams (fig. 3, 16 & 17) yields the screening ac-
tivity as the common part of these SeeMe diagrams. Since a useful way to present
such commonalities and differences at the SeeMe level is beyond the scope of this
paper and subject to further research, we will not go into these details. However, gray-
ing out common parts and highlighting differences is a way to go forward. Another
useful idea might be to keep the common parts static in a presentation and let the user
flip through the differences (as in e.g. iTunes cover flow). The usability of an appro-
priate user interface for the SeeMe editor will also be crucial to creating an effective
way to communicate differences and commonalities.

In principle, however, a limited number of different situations may arise. Due to
this fact, a small set of graph transformation rules (e.g. in AGG) can deal with the task
of extracting the common and different parts and provide the necessary additional
information to show these parts in the context of the involved diagrams. The overall
structure of the situation is sketched in fig. 5. There the dotted lines link correspond-
ing nodes of the graph representation of two SeeMe models. Thus all common parts
are flagged by such kinds of arc in the graph. The parts of the two sub graphs which
are not linked by such “equal” arcs are displayed as mentioned above using different
color, highlighting etc. The various types of combinations regarding the difference
part are:

• Update of an attribute (as indicated by a special arc in the graph as well)
• Missing / different relations between SeeMe elements
• Missing / different SeeMe element (Entity, Activity)
• Different structures
• Different degrees of explicit imprecision and ambiguity
• Varying inclusion of different perspectives in the same diagram

The main question with respect to the identified differences is about the reasons for
these differences (why-question) and how to deal with them (how-question). Depend-
ing on those kinds of elements not indicated as common, these “why”-questions can be
refined. Therefore, strategies for representing the differences have to be implemented.

For example, figure 18 displays a comparison of the FAA (fig. 3), security (fig. 16)
and TSA (fig. 17) perspectives. The diagram of fig. 18 is manually constructed to illus-
trate the potential outcome which should be achieved by an automatic comparison.
Those areas, which are not different, are indicated with grey boxes. The specification
of the sub elements of the activity “increasing security” is extended by including all
three perspectives. Relations which could disturb the comparison are hidden by a hide-
and-show mechanism provided by the SeeMe-editor. They can be retrieved with the
grey residues which are left over if a relation is hidden. It becomes apparent that add-
ing the different perspectives into one super-element (“increasing security”) can help to
reduce incompleteness, or can increase uncertainty about the question really repre-
sented by a super-element.

4.3 How to Deal with the Differences

It is natural to ask whether differently decomposed diagrams can be integrated into
one large picture or whether the differing specifications do exclude each other and
therefore require a decision on how the final specification should look. The more

80 M. Goedicke and T. Herrmann

Fig. 18. Making commonalities and differences more comprehensible

difficult case is to deal with conflicts with where the decision to reduce ambiguity or
uncertainty is necessary. This can take place in different phases of software develop-
ment and therefore on different information bases:

• Differences and conflicting perspectives are consolidated during the early
phase of conceptual design – usually in workshops where the differing specifi-
cations are discussed.

• The decision is only made when first prototypes can be evaluated and help to
make the practical impacts of the differences more comprehensive.

• The differences cannot be consolidated before a first period of practical usage
has taken place and has revealed the real problems behind the different views.

• The differences apply to different situations and the software has to be de-
signed flexibly enough to deal with all kinds of differing specifications since
they represent different situations which can happen in real life. For example it
may be the case that the two different constellations represented in figure 3
(pre-programmed workflow vs. freedom of decision) can both be appropriate
with respect to the tasks to be supported by the software – and therefore the
software has to be flexibly configured depending on the cases to be dealt with.

This shall suffice to describe our approach to combine SeeMe and the ViewPoint
concept. As we have been able to see, this is possible and has numerous opportunities
for exploitation. We briefly summarize our contribution and provide some context
with other work.

5 Assessment and Related Work

The work and the approach presented here address a number of areas. On the one
hand, it is the decentralized view-oriented work that we use to capture different per-
spectives of different stakeholders which is a natural follow up to the research regard-
ing the ViewPoint concept and similar work. On the other hand, the use of SeeMe as a

 A Case for ViewPoints and Documents 81

representation scheme within a ViewPoint introduces the explicit specification of
imprecision and ambiguity in a specification statement. The entire approach is a com-
bination of both ideas and presents a step beyond the “living with inconsistencies”
paradigm of the ViewPoint concept. One can regard the introduction of explicit ways
to state ambiguities and imprecise statements in a specification as a special way to use
the idea of “living with inconsistencies”.

By offering these explicit ways for specifying ambiguous and imprecise facts in a
statement, new checks between ViewPoints become possible. The results of the
checks provide additional insight into the specific development process and the in-
volved stakeholders’ view.

The research related to viewpoints [2] and [16] sparked a lot of further research
since its intention was (and still is) to consider the decentralized nature of actual soft-
ware development processes seriously. The related paradigm of “living with inconsis-
tency” is a natural consequence of such a decentralized approach. Thus much of the
work in this area has been on detecting inconsistencies by defining relationships be-
tween ViewPoints [17]. This kind of work has been tackled in various ways. One was
to use various forms of logic and in an operational form first order logic as in the
xlinkit-approach [15], or to use graphs and graph transformation [1], [4]. The main
problem in these attempts was to find a generic way to express commonalities and
differences in the specification part of a ViewPoint in an operational way. One is to
use an executable form of first order logic as in xlinkit [15]. While this approach is
powerful and efficient, it lacks the more general power of graph matching and graph
transformation approaches. This is not so much in the sense of the theoretical expres-
siveness of graph transformation approaches but more in the sense of the way of
expressing the involved rules. However, the well-founded mathematical graph trans-
formation approaches as in AGG [22], which are based on algebra and category the-
ory, imply the enumeration of all possible combinations of element types in their
respective left hand side of the involved rules. This is, of course, possible but given
the number of types of elements (as in SeeMe) it quickly becomes impractical to
consider all the combinations of element types of realistic representation schemes.

Due to the progress in generic graph differencing engines as, for example, in SiDiff,
new effective ways to compute commonalities and differences in graph-based repre-
sentation schemes become available. Thus the combination of such techniques pre-
sented here is a step forward in using decentralized specification schemes successfully.

The strength of SeeMe – if it is compared with other methods – is the possibility to
express and indicate vagueness. SeeMe is the only modeling notation which explicitly
indicates and deals with vagueness from a qualitative point of few. It includes various
means of depicting that a specification is incomplete or that its correctness is uncer-
tain. SeeMe does not use probabilities or quantitative intervals to express imprecision.
The quantitative modeling of uncertainty is the main subject of other approaches,
which combine fuzziness with modeling see e.g. [12]. To compare SeeMe with quan-
titatively oriented approaches is not reasonable since they pursue different purposes.
Other methods deal implicitly with qualitative imprecision: Use case diagrams are
incomplete since they represent an overview or are on a higher level of abstraction.
Other methods, like i* [26] represent dependency diagrams which offer the possibility
to represent dependencies between goals, conditions, tasks etc. i* differentiates be-
tween goals and soft-goals. Using a symbol for a soft-goal can be considered as an

82 M. Goedicke and T. Herrmann

explicit indicator of imprecision. However, dependency diagrams are not process-
oriented and are not a means to support a step-by-step refinement to derive functional-
ity and modes of interaction with the technical system. SeeMe is not exclusively
focused on the interaction with the technical system, as is the case with use-case dia-
grams in UML. By contrast, SeeMe supports the presentation of entire processes and
work settings. Compared with methods which are similar to flowcharts, SeeMe has
been extended by adding the possibilities for embedding sub-elements. All kinds of
methods which use the nesting of elements (e.g. state charts, [7]) can omit details
when they present embedded substructures. However, these approaches do not make
explicit whether the modeler is aware of the incompleteness of a diagram, or not. The
viewers cannot discern whether a lacking aspect has been intentionally or uninten-
tionally left out. Furthermore, SeeMe is not restricted to only present a view on cer-
tain aspects such as functionality, data, organization or flows, but can also integrate
these views. SeeMe is compatible with other, more formal methods, since it can
mimic structures as they can be found in activity diagrams, eEPCs or in flow charts.
Theoretically it can represent all structures needed for programming. However, in the
practical projects it was not used for this purpose.

The additional aspect of explicitly including various forms of ambiguity and impre-
cision enriches the ViewPoint framework by important additional means of expression
especially for the upstream software development activities where the identification
and resolution of all kinds of inconsistencies and imprecision is vital.

6 Conclusions

So far it has only been possible to make incompleteness and uncertainty comprehen-
sible with SeeMe if they are related to a single perspective. The representation of
differences between varying perspectives was not systematically supported. We have
presented a new way of addressing those kinds of ambiguity and imprecision which
are related to varying stakeholder perspectives as they occur naturally in a distributed
development process. Therefore we have employed two established approaches:
SeeMe and ViewPoints. Based on the graph-based structure of SeeMe specification
we have shown how the goal of joining both approaches without losing specification
information during the various necessary transformation steps can be accomplished.
Our contribution here has to be seen as a feasibility study of combining these two
approaches and there are a number of details which have to be dealt with in order to
arrive at a working tool and environment. However, we have shown that it is possible
without involving great effort in terms of graph transformation or other low level
tools.

In short we can say that this was a successful study which provided new insights
into the use of SeeMe on the one hand and decentralized development processes using
ViewPoints on the other. Thus we see the combination of both approaches using gen-
eral graph differencing and graph transformation as underlying machinery as a good
basis to realize new useful tools which support the specification process very early in
the development process on a decentralized basis, with a good connection to tradi-
tional processes using UML-based notations and tools.

 A Case for ViewPoints and Documents 83

Technically there are a number of topics which can easily achieve a great deal of
progress. This applies especially to the problem of comparing two SeeMe diagrams.
The current procedure is still very generic and is not tuned to the special appearance
and structure of the SeeMe diagrams. The SiDiff tool can be tuned to the kind of dia-
grams to be compared and this tuning will prove very helpful.. However, the current
version already achieves good results.

In addition, a number of pre- and post-comparison transformations of the graphs
exported by the SeeMe editor will also enhance the results of the overall process.
Especially by hiding the geometry information as a pre-comparison measure and
recovering and recalculating the geometries and layouts after the comparison of the
diagrams with SiDiff will need techniques to present the comparison results in various
useful ways be enabled.

The presentation of the diagram comparison is a major area where we have to find
useful ways of representing the common parts and the differences between diagrams.
While we have shown here that the necessary information can be provided through
the transformation processes, the way the results are presented to stakeholders is not
obvious. Various prototypes will be created to investigate this question.

Acknowledgements. We would like to thank Michael Striewe (University of
Duisburg-Essen) who provided support in creating the diagrams in various versions
and helped to conduct the study. We are also grateful to Udo Kelter and his group at
the University of Siegen in providing SiDiff over the web in such a way that supported
the peculiar structure of SeeMe diagrams and the fulfillment of our special requests.

References

1. Enders, B.E., Goedicke, M., Heverhagen, T., Tracht, R., Troepfner, P.: Towards an Inte-
gration of Different Specification Methods by Using the ViewPoint Framework. J. Inte-
grated Design & Process Science 6(2), 1–23 (2002)

2. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development. Intl. J. of Soft-
ware Engineering and Knowledge Engineering 2(1), 31–57 (1992)

3. Finkelstein, A., Sommerville, I.: The Viewpoints FAQ. Software Engineering Journal 11,
2–4 (1996)

4. Goedicke, M., Enders-Sucrow, B., Meyer, T., Taentzer, G.: ViewPoint-oriented software
development: Tool support for integrating multiple perspectives by distributed graph trans-
formation. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 43–
47. Springer, Heidelberg (2000)

5. Green, T., Benyon, D.: The skull beneath the skin: entity-relationship models of informa-
tion artifacts. Int. J. Human-Computer Studies 44, 801–829 (1996)

6. Harel, D.: Statecharts: A Visual Formalism For Complex Systems. Science of Computer
Programming 8, 231–274 (1987)

7. Harel, D.: On Visual Formalisms. CACM 31, 514–529 (1988)
8. Herrmann, T., Loser, K.-U.: Vagueness in models of socio-technical systems. Behaviour

and Information Technology 18(5), 313–323 (1999)

84 M. Goedicke and T. Herrmann

9. Herrmann, T., Kunau, G., Loser, K.-U., Menold, N.: Sociotechnical Walkthrough: Design-
ing Technology along Work Processes. In: Clement, A., Cindio, F., Oostveen, A., Schuler,
D., van den Besselaar, P. (eds.) Artful Integration: Interweaving Media, Materials and Prac-
tices. Proc. 8th Participatory Design Conference, pp. 132–141. ACM, New York (2004)

10. Herrmann, Th.: SeeMee in a Nutshell, Technical Report Univ. Bochum (2006),
 https://web-imtm.iaw.ruhr-uni-bochum.de/
 pub/bscw.cgi/0/208299/30621/30621.pdf

11. Kienle, A., Herrmann, T.: Integration of Communication, Coordination and Learning Ma-
terial – a Guide for the Functionality of Collaborative Learning Environments. In: Proc.
36th Annual Hawaii International Conference on System Sciences (HICSS 2003) - Track1,
vol. 1, p. 33. IEEE Computer Society, Los Alamitos (2003)

12. Lee, J., Jong-Yih Kuo, J.-Y., Xue, N.-L.: A note on current approaches to extending fuzzy
logic to object-oriented modeling. Intl. J. of Intelligent Systems. 16(7), 807–820 (2001)

13. Luqi, Kordon, F.: Advances in Requirements Engineering: Bridging the Gap between
Stakeholders’ Needs and Formal Designs. In: Paech, B., Martell, C. (eds.) Monterey
Workshop 2007. LNCS, vol. 5320, pp. 15–25. Springer, Heidelberg (2007)

14. Moody, D.: Graphical Entity Relationship Models: Towards a more User understandable
Representation of Data. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 227–244.
Springer, Heidelberg (1996)

15. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: a Consistency Checking
and Smart Link Generation Service. ACM Trans. On Internet Technology 2(2), 151–185
(2002)

16. Nuseibeh, B., Kramer, J., Finkelstein, A.: A Framework for Expressing the Relationships
Between Multiple Views in Requirements Specification. IEEE Trans. on Software Engi-
neering 20, 760–773 (1994)

17. Nuseibeh, B., Kramer, J., Finkelstein, A.: Viewpoints: meaningful relationships are diffi-
cult! In: Proc. 25th International Conference on Software Engineering (ICSE 2003),
p. 676. IEEE CS Press, Los Alamitos (2003)

18. Oberquelle, H., Kupka, I., Maass, S.: A view of human-machine communication and co-
operation. Intl. Journal of Man-Machine Studies 19, 309–333 (1983)

19. Piwetz, C.: Requirements Definitions for Groupware Systems – A View-Oriented Ap-
proach. PhD. Dissertation, Univ. Duisburg-Essen (2001)

20. Rational Software Corp. Unified Modelling Language. Documentation Set Version 1.0.,
Santa Clara, CA: Rational Software Cooperation (1997)

21. Scheer, A.-W.: Architecture of Integrated Information Systems: Foundations of Enterprise
Modelling. Springer, Berlin (1992)

22. Taentzer, G.: AGG: A graph transformation environment for modeling and validation of
software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062.
Springer, Heidelberg (2004)

23. Taentzer, G., Toffetti Carughi, G.: A graph-based approach to transform XML documents.
In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, Springer, Heidelberg (2006)

24. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference Computation of Large Models.
In: 6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pp. 295–304. ACM,
New York (2007)

25. Yourdon, E.: Modern structured analysis. Yourdon Press, Englewood Cliffs (1989)
26. Yu, E., Mylopoulos, J.M.: Understanding “Why” in Software Process Modelling, Analysis

and Design. In: Proc. 16th International Conference on Software Engineering, pp. 159–168.
IEEE Computer Society Press, Los Alamitos (1994)

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 85–102, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Combining Ontologies and Model Weaving for
the Evolution of Requirements Models

Allyson M. Hoss and Doris L. Carver

Department of Computer Science
Louisiana State University

Baton Rouge, LA 70803, USA
{ahoss1,dcarver}@lsu.edu

Abstract. Software change resulting from new requirements, environmental
modifications, and error detection creates numerous challenges for the mainte-
nance of software products. While many software evolution strategies focus on
code-to-modeling language analysis, few address software evolution at higher
abstraction levels. Most lack the flexibility to incorporate multiple modeling
languages. Not many consider the integration and reuse of domain knowledge
with design knowledge. We address these challenges by combining ontologies
and model weaving to assist in software evolution of abstract artifacts. Our
goals are to: recover high-level artifacts such as requirements and design mod-
els defined using a variety of software modeling languages; simplify modifica-
tion of those models; reuse software design and domain knowledge contained
within models; and integrate those models with enhancements via a novel com-
bination of ontological and model weaving concepts. Additional benefits to de-
sign recovery and software evolution include detecting high-level dependencies
and identifying differences between evolved software and initial specifications.

Keywords: abstract artifact, design knowledge, domain knowledge, modeling
languages, knowledge reuse, software evolution.

1 Introduction

Considerable research in requirements engineering focuses on new development
while less research addresses integrating new technologies, such as pervasive devices
and artificial intelligence software, with existing software systems. And yet, rapid
changes in today’s computing environments require software to evolve quickly or
become obsolete and perish. When total replacement is not desirable or feasible,
software must eventually evolve to incorporate new technologies. Additionally, unan-
ticipated events often make the merging of new requirements into existing systems a
priority. A simple scenario derived from the airport security software system case
study presented for analysis at the 14th Monterey Workshop [1] demonstrates such
needs. A new requirement banning passengers from carrying liquids on board air-
crafts became a priority after an attempted terrorist plot to blow up an airplane in the
United Kingdom. Now, in addition to screening carry-on luggage for dangerous items
such as knives and guns, the scanning software should check for liquids existing in a

86 A.M. Hoss and D.L. Carver

variety of containers. This scenario highlights the need to address potential threats
from as yet unanticipated sources and identify people and/or inanimate objects requir-
ing secondary screening. Pervasive devices such as smart cards or biometric passports
for travelers are an example of applying a new technology, biometric authentication,
to address security concerns [2]. Similar smart cards can enable biometric authentica-
tion utilizing both fingerprint and iris data [3]. In addition to interacting with such
pervasive devices, it will soon become paramount to integrate knowledge from sev-
eral new technologies such as a machine-learning based software program, developed
at the National University of Ireland at Galway, that can detect substances that might
be used as explosives or illegal drugs [4, 5]. Other newly developed airport security
devices include the use of sensors in conjunction with artificial intelligence based
behavioral screening to detect atypical behavior indicating possible malicious intent
[6]. For example, an erratically driven automobile with a weight far exceeding its
normal range would warrant closer inspection. Software interaction will also be re-
quired with biometric security system devices such as cameras and other sensors
detecting physical traits in addition to fingerprint and iris data [6].

Software systems interacting with such new technologies will need to process
knowledge (data and rules associated with that data based on specific domain and
context) in a format that facilitates reasoning to handle uncertainty, change, and inter-
action. This includes extracting and reusing software design and domain knowledge,
manipulation of abstract artifacts, performing dependency analysis, and processing
multiple modeling languages. Interaction with multiple external databases to analyze
personal information is inevitable. Eventually, detection must include attempts to
circumvent security measures, such as fake fingerprints. Ontological reasoning and
domain knowledge incorporated into the evolved software will enable existing sys-
tems to better adapt to and reason about the new technologies with which they will
interact. We elaborate on software evolution with regard to these challenges in Sec-
tion 2, followed by a brief overview of ontologies in Section 3 and model weaving in
Section 4. In Section 5 we present our initial research steps towards combining model
weaving and ontologies as a promising solution to these challenges. Section 6 reviews
related literature. Section 7 reviews the advantages of our approach and concludes
with the next steps in our research.

2 Software Evolution Challenges for Changing Environments

Software evolution refers to changes a software product undergoes to meet changes in
its environment and/or requirements. Modifications include adding, deleting, and/or
modifying artifacts such as requirements, design, source code, and test cases.
Software evolution involves reverse engineering and forward engineering. Reverse
engineering has been defined as “the process of analyzing a subject system to 1) iden-
tify the system’s components and their interrelationships and 2) create representations
of the system in another form or at a higher level of abstraction” [7]. Forward engi-
neering after reverse engineering takes the re-created abstract representations of the
existing system, incorporates new requirements, and produces the evolved system
implementation. Software evolution techniques primarily address source code
changes and include ad-hoc copy-and-modify, refactoring, visualization, generative,

 Towards Combining Ontologies and Model Weaving 87

and aspect-oriented approaches. One of the current challenges in software evolution is
effectively evolving the more abstract artifacts of software development [8]. The
software evolution approaches that do abstract above the code level are often “far too
detailed to be helpful for talking about the design with someone else…working with
too detailed a model is a trap” [9].

Design recovery is at the heart of reverse engineering; it “recreates design abstrac-
tions from a combination of code, existing design documentation (if available), per-
sonal experience, and general knowledge about problem and application domains”
[7]. In essence, design recovery extracts knowledge. Common design abstractions
recreated during design recovery include abstract syntax trees and control flow
graphs. However, these abstractions do not typically incorporate domain knowledge
or facilitate reasoning with both design and domain knowledge. Also, few design
recovery techniques extract domain knowledge from the source or design models. The
capabilities to extract such knowledge and reason with that knowledge are critical to
addressing the pervasive computing need for context-awareness and ability to handle
uncertainty, change, and interaction. Context-awareness involves “capturing and mak-
ing sense of imprecise and sometimes conflicting data and uncertain physical worlds-
different types of entities (software objects) in the environment must be able to reason
about uncertainty” [10].

Design recovery includes dependency analysis. Analysis of dependencies usually
occurs at the implementation level by reasoning with code level constructs such as
variables, statements, and procedures; and, it often includes program dependence
graphs. Architectural dependency analysis involves higher-level artifacts such as
components, connections and ports, and more recently includes analysis of dependen-
cies at the package level. Recovering designs for evolution into pervasive computing
would benefit from analysis of dependencies at an abstract level dealing with high-
level design and requirements constructs such as objects, behavior, relationships,
goals, and constraints. Such high-level constructs facilitate the modeling of contex-
tual and interaction dependencies. Modeling dependencies at an abstract level, such as
with conceptual graphs, provides a “coherent and complete description of dependen-
cies at the general level and explicitly delineates the characteristics of the dependency
from any domain limitations” [11]. Dependency analysis may require assistance from
people. There is a need for enhanced human interaction in reverse engineering tech-
niques [12].

A common limitation in software evolution techniques today is a single language
focus. Few techniques consider the plethora of modeling languages ranging from
general-purpose languages to domain specific languages. It is not uncommon for
software applications to incorporate several modeling languages in an effort to ad-
dress interaction in the heterogeneous needs of pervasive computing. A “crucial, and
largely neglected, aspect of software evolution research is the need to deal with mul-
tiple languages” [8].

Lastly, there is a lack of software design and domain knowledge reuse in software
evolution. A recent description of model evolution activities includes change propaga-
tion, impact analysis, inconsistency management, model refactoring, code generation,
reverse engineering, version control, and traceability management [13]. Missing from
this list is the integration and reuse of software design and domain knowledge. And
yet, capturing both the experience of software design engineers and domain knowledge

88 A.M. Hoss and D.L. Carver

and then reusing such experience and knowledge would save time, effort, and cost of
future development. Knowledge of a system is often buried within code and/or docu-
mentation that are not updated consistently. Due to inevitable employee turnover, de-
signers must absorb details on partially completed systems to make incremental up-
dates. Making software design and domain knowledge reusable would help address
these problems.

This research uses three types of software design knowledge: design representa-
tion, design rationale, and design implementation. Design representation includes
abstract descriptions of what a software system should do and how it should be done.
Design representation includes software artifacts such as requirements, use cases,
patterns, and design diagrams. Design rationale “is the explicit listing of decisions
made during a design process and the reasons why those decisions were made” [14].
Design implementation includes the platform specific descriptions of the design rep-
resentations (such as code and test plans). Considerable research focuses on knowl-
edge reuse in design rationale and design implementation. While some knowledge
reuse exists in design representation, such as software patterns, reuse of knowledge
related to the syntactic and semantic rules governing the relationships among sub-
structures of abstract design artifacts is very limited.

Software evolution techniques inevitably must address issues concerning unpre-
dictable environments, change, adaptation, interaction, and context-awareness. Ex-
tracting design and domain knowledge from existing software systems, reasoning and
identifying dependencies within that knowledge, and interacting with multiple model-
ing languages will become critical in handling such issues. Ontologies and model
weaving offer encouraging potential for addressing these challenges.

3 Ontologies

Utilized for several years in philosophy, linguistics, and artificial intelligence, ontolo-
gies are now a popular knowledge representation model in a variety of software
development areas such as multi-agent systems, natural language processing, informa-
tion retrieval, and pervasive computing. An ontology consists of hierarchically ar-
ranged concepts, relationships among those concepts, and rules that govern those
relationships. While no standard definition of ontology exists, a commonly accepted
definition describes an ontology as a formal, explicit specification of a shared concep-
tualization [15, 16]. An ontology is, therefore, an abstract model of some area of
knowledge used to share information regarding that knowledge area. It contains ex-
plicitly defined and generally understood concepts and constraints that are machine
understandable.

Ontologies and metamodels are similar but not synonymous. Ontologies model
real-world domains or systems and describe real-world entities while metamodels
define modeling languages that in turn describe real-world domains or systems [17].
Instances of metamodels are models. Metamodels describe data structures while on-
tologies typically do not. Lastly, “a valid meta-model is an ontology, but not all on-
tologies are modeled explicitly as meta-models” [18].

 Towards Combining Ontologies and Model Weaving 89

Ontologies and ontology-based models offer numerous benefits to software de-
velopment in pervasive computing. A recent survey [19] highlights these benefits
including:

• representing and reasoning with context data;
• representing and managing privacy and trust issues;
• matching “producers and consumers of contextual information”;
• facilitating design of interaction; and, modeling uncertainty.

Developers utilize automated reasoning software [20] to address validation, ambi-
guity, incompleteness, and infer new knowledge [21]. Several pervasive computing
systems utilize ontologies such as the Context Broker Architecture (CoBrA) [22] to
assist with context-aware computing. CoBrA represents pervasive computing con-
cepts using the Standard Ontology for Ubiquitous and Pervasive Applications [23].

This research utilizes one ontology to represent design knowledge, described in
Section 3.1, and a second ontology to represent domain knowledge, described in
Section 3.2.

3.1 Representing Design Knowledge

The Ontology for Software Specification and Design (OSSD) Model [24] will be the
basis to represent design knowledge. A partial view of this model is given in Figure 1.
The OSSD Model is an ontology of software design and specification knowledge that
consists of hierarchically arranged software development concepts, relationships, and
rules. The Model integrates the structural and relationship knowledge acquired from
multiple views of a software design and it utilizes ontological reasoning via rules
associated with its properties to assist with both syntactic and semantic error detection
among multiple design views and identify high-level dependency relationships among
software design and requirements constructs.
The graphical notation of the OSSD Model includes rounded rectangles representing
classes interconnected via solid lines implying “Is-a” relations, and dashed lines rep-
resenting properties that describe additional details regarding classes and conceptually
link related classes. The direction of the arrow at the end of a dashed line distin-
guishes a “from” class and “to” class. Class names are capitalized and written in ital-
ics. Property names are written in italics but are not capitalized. Instances of a class
(not shown in the generic view of the OSSD Model in Figure 1) are indicated at the
end of a double-headed arrow. The top level of the OSSD Model is a Construct,
which is subdivided into nine subconstructs: Object, Attribute, Behavior, Relation,
State, Transition, Goal, Constraint, and Plan. Each of these subconstructs is further
subdivided. Properties within the OSSD Model depict both structural and behavior
relationships between OSSD constructs and imply the “has” relationship unless oth-
erwise labeled. The OSSD Model contains agent-oriented concepts of goal, belief,
and intention. Beliefs portray knowledge that an agent has of its environment. They
are represented in the OSSD Model via Object, Relation, Attribute, State, Transition
and Constraint. Goals are the ultimate outcomes desired by an agent and are repre-
sented via Goal. Intentions are the goals that an agent is focusing on at a specific
moment in time and are depicted via how the agent plans to work towards its selected

90 A.M. Hoss and D.L. Carver

depends
on

Note: unmarked
properties are
implied "has"

State

c a
us

e s

Guard.

Trigger.

Precond.

Postcond

Role

performed by

Obj.Attrib

To.Obj From.Obj

sends msg to

Event

sends msg to

contains

Relation

Rel.Attrib

entry

exit

doAttribute

co
nc

er
ns

Agent

inputs

outputs

operationalizes

un
de

r
re

sp
on

si
bi

lit
y

of

Goal

Entity

Object

Statebased

Behavior

Construct

Control

Monitor

Perform

Transition

Constraint

Action.

Plan

co
nt

ai
ns

Fig. 1. Partial view of the OSSD Model

goals based on its current knowledge. Intentions are represented via Plan. An Agent is
an Object that controls and/or monitors the behavior of other Objects. Agents interact
with other Agents, control Entities, and react to Events based on sensory input from
their environment. Agents execute their own thread of control, maintain their own
internal state, and cannot be a subcomponent of another Object. Agents send messages
to other Objects and receive responses from Objects. An Entity is an Object that does
not control or monitor the behavior of other Objects unless those Objects are subcom-
ponents of the Entity. Entities perform operations at the request of Agents and send
messages to Agents indicating an operation has been performed. The internal state of
an Entity can be changed as a result of receiving a message from another Object. An
Event is an Object that has only one State with no significant duration of time. An
Event can be as simple as a discrete change in an environment variable, including
temporal variables, or the completion of a complex operation.

As an example, modeling the simple airport security scenario given in the Intro-
duction using the OSSD Model, the passenger might be represented as an Agent
whose Goal is to travel by flying (Behavior) via an airplane (Entity) but the Con-
straints on that Behavior requires identifying a thumbprint (Entity) before (Precondi-
tion) any airplane (Entity) is boarded (Behavior).

3.2 Representing Domain Knowledge

We will also utilize a second ontology, the Standard Upper Merged Ontology (SUMO)
[25] as the basis for our ontological representation to store domain knowledge. “Upper

 Towards Combining Ontologies and Model Weaving 91

ontologies are quickly becoming a key technology for integrating heterogeneous
knowledge coming from different sources” [26]. SUMO is a large formal ontology that
is available to the public and is currently mapped to the complete WordNet lexicon
[27]. WordNet is a lexical reference system for the English language that categorizes
English words into parts of speech (noun, verb, adjective, adverb). It organizes words
into sets of synonyms, referred to as synsets, gives definitions and provides semantic
relations between the synsets. These relations include synonyms/antonyms, hy-
pernyms/hyponyms (is-a relations with a broader and narrower definition), and mero-
nyms/holonyms (similar to part/whole of the part-of or has-part relations). A partial
view of the SUMO hierarchy is shown in Figure 2.

Physical

SelfConnectedObj

Collection

SetClass Quantity Attribute

Number

Entity

Physical

SelfContainedObject

SetClass Quantity Attribute

Number PhyscialQuantity PhyscialQuantity

relation

Agent

…

Artifact

AbstractAbstract

…
Object Object

PhyscialQuantityIntentionalProcess

PhyscialQuantityInternalChange

ProcessProcess

… Collection

Device…

Motion

Physical

SelfConnectedObj

Collection Collection

SetClass Quantity Attribute

Number

Entity

Physical

SelfContainedObject

SetClass Quantity Attribute

Number PhyscialQuantity PhyscialQuantity PhyscialQuantity PhyscialQuantity

relation

Agent Agent

…

Artifact

AbstractAbstractAbstractAbstract

…
Object Object Object Object

PhyscialQuantityIntentionalProcessPhyscialQuantityIntentionalProcess

PhyscialQuantityInternalChangePhyscialQuantityInternalChange

ProcessProcessProcessProcess

… Collection Collection

DeviceDevice…

Motion

Fig. 2. Partial View of SUMO Hierarchy

Example SUMO classifications for domain knowledge obtained from the require-
ments of the airport security software system case study include:

Entity:Object:LivingThing:Organism:Person:Traveler:Passenger
Entity:CausalAgent:Person:Traveler:Passenger

Entity:Object:Artifact:Instrumentality:Container:Case:Luggage

Entity:Object:Artifact:Instrumentality:Device:Instrument:Weapon:Gun;

Entity:Abstract:Synset:Verb:Examine;Inspect;
Entity:Physical:Process:InternalChange:BiologicalProcess:…:Inspect;

Entity:Abstract:Relation:…Communication:…Ban
Entity:Physical:Process:IntentionalProcess:…:Communication:…Ban

These examples demonstrate SUMO representing knowledge that conveys both
physical and abstract concepts.

92 A.M. Hoss and D.L. Carver

There exist several advantages to basing our ontological representation of the do-
main knowledge on SUMO. Its broad range of knowledge is extended via several mid-
level ontologies, such as communications and distributed computing. It can be further
linked to new sub-ontologies thereby making it scalable. It is a mature ontology with
extensive documentation that is “intended to be used for enabling data interoperability,
information search and retrieval, automated inference, and natural language process-
ing“ [28]. Current examples of ontologies integrated with, based on, and/or derived
from SUMO include:

• supply chain management ontology [29];
• ontology representing experimental design, methodology, results [30];
• context ontology for personal information management [31];
• ontology describing pervasive computing services [32]; and
• General Ontology for Linguistic Description (GOLD) [33].

4 Model Weaving

Model weaving is a form of model transformation. Stated simply, model transforma-
tion involves transforming a source model to a target model. Model transformation is
at the heart of a variety of techniques including forward engineering from models to
code, refinement and refactoring of models, transformation between models, and
reverse engineering from code to models. The OMG’s Model Driven Architecture
(MDA) [34] defines guidelines for model definition and transformation. Model weav-
ing utilizes a weaving model that has typed links containing user-defined semantics to
map between model elements [35]. Figure 3 elaborates on existing model weaving

MetametaModel

ModelA ModelB

conforms to weaving input

B-to-A Transformation

A-to-B Transformation

transforms

MetaModelA MetaModelBWeaving
MetaModel

Weaving Model
ModelA links ModelB

a.element1 equivalent b.element1
a.element2 nested b.element2
a.element3 concat b.element3

Fig. 3. Model weaving

 Towards Combining Ontologies and Model Weaving 93

examples [36, 37] to depict the model weaving concept. Weaving links specify the
semantic relationships between source and target models above and beyond the one-
to-one element matching of most model transformation approaches. The weaving
model conforms to a predefined weaving metamodel that defines a variety of mapping
capabilities. With model weaving, one element of a source model can be linked to a
set of elements in the target model and vice versa. Complex mappings such as n:1,
1:m, and n:m are possible as well as expressions such as equality, equivalence, non-
equivalence, and generality via metamodel extensions and mapping expressions [36].
The weaving model is incorporated into a transformation program that performs the
actual model transformation. Creating a weaving model is a semi-automated process
in which many similarities among model elements can be identified automatically, but
manual refinement may be necessary.

Model weaving offers three advantages over other model transformation tech-
niques [35]: links in a weaving model are bi-directional whereas most model trans-
formation techniques produce unidirectional transformations; transformation patterns
associated with weaving links are more reusable than the structure dependent coding
patterns of most model transformation approaches; and changes to source and target
metamodels propagate through weaving links with fewer modifications to the weav-
ing metamodel than in other model transformation techniques in which source and
target model changes require changes in the model transformation program.

5 Combining Model Weaving and Ontologies

Conceptually, this research weaves together concepts from artificial intelligence
(ontologies representing both software design knowledge and domain knowledge),
linguistics (analysis of word usage to assist knowledge extraction), and software en-
gineering (design recovery and evolution). The top of Figure 4 shows initial require-
ments and design specifications of an airport security system transformed into two
ontological representations, an Airport Design Ontology and an Airport Domain On-
tology, via two corresponding Generic Ontologies. The Generic Design Ontology
consists of properties, or rules, governing the relationships among software require-
ments and design constructs. We utilize the OSSD Model as basis for the Generic
Design Ontology. The Generic Domain Ontology focuses on facts and rules within a
given domain. We base the Generic Domain Ontology on SUMO. The DomainWM,
DesignWM, and Design&DomainWM in Figure 4 represent the models we use to
weave between a given metamodel and the Generic Domain Ontology, between a
given metamodel and the Generic Design Ontology, and between the Generic Domain
Ontology and the Generic Design Ontology respectively. Figure 4 also shows how the
merging of the existing airport software system, new airport security requirements,
and new knowledge from independent ontologies, such as a security ontology, into
the ontological representations of the airport software system would occur. The right
side of Figure 4 shows the resulting output as either the existing airport software de-
sign or the enhanced airport software design. The output format can be either in the
same or different modeling language as the input format.

94 A.M. Hoss and D.L. Carver

rule21

a b

Airport
Domain Ontology

rule32

e
d

Airport Design
Ontology

c

domain link design

rule21 equals rule32

Design
&

Domain
WM

Existing Design

Enhanced
Design

Generic
Domain

Ontology

DomainWM

Generic
Design

Ontology

Design WM

New
RequirementsExisting

Program

Security
Ontology

Initial
Requirements
& Design

Fig. 4. Conceptual Overview

Our approach facilitates knowledge reuse by applying knowledge acquired during
processing of one application to subsequent applications via our generic ontologies.
We utilize the ontologies shown in Figure 4 to store initial requirements and design
models that are later accessed during the evolution of those models thereby facilitat-
ing knowledge reuse and multi-language integration.

Referring to the motivating scenario presented earlier, we consider the evolution of
an airport software system to incorporate new security requirements. Developers wish
to identify how the existing system differs for the original design, current knowledge
dependencies, and how to incorporate new requirements such as recognition of a
customer’s smartcard to facilitate biometric authentication.

To perform these tasks, we would perform a series of weaving transformations
transforming the initial design for the airport software system into two ontological
representations, one for design knowledge and one for domain knowledge as shown in
Figure 4 via the Airport Design Ontology and Airport Domain Ontology respectively.
Next, we would weave the current implementation, represented in Figure 4 as the
“existing program”, into ontological representations of the evolved Airport Design
and Airport Domain Ontologies. At this point, we could utilize weaving models to
output an “existing design” representation, in the same or different modeling language
than the initial design. Or, we could utilize an ontology versioning program such as
PROMPTDIFF [38] to assist in identifying the differences between the ontological
representations of the initial design and the existing design. Alternatively, we could

 Towards Combining Ontologies and Model Weaving 95

weave new requirements and/or design knowledge concerning pervasive devices and
authentication techniques into these ontological representations.

In Figure 4, we input new requirements, such as a rule21 that controls the relation-
ship between domain constructs “a” and “b” which has a dependency affecting and/or
producing rule32 that controls the relationship between design constructs “d” and “e”.
We weave them both into the existing ontologies for the airport software system.
Numerous ontology-merging programs exist, such as IPROMPT [39], to assist in
merging the ontological representations of initial design and new requirements. We
then utilize the weaving models to output an “enhanced design” representation in one
or more modeling languages. We intend to provide interfaces to facilitate human
interaction in manipulating the ontological representations, weaving models, and
high-level inter-dependency rules.

We anticipate that weaving new knowledge such as thumbprint recognition into an
exiting application will benefit from knowledge obtained from several ontologies
developed to address a variety of domains such as pervasive computing services,
network security, privacy, and access control. We will define weaving models to
weave such knowledge into the Generic Domain Ontology and Generic Design On-
tology and therefore make it accessible to future applications.

Figures 5a and 5b provide a more detailed but generic overview of our weaving
logic. Figure 5a shows weaving of the initial design, Model A in the center of the
diagram, into its ontological representation DesignOntologyA’, in the bottom right
corner of the diagram. We would weave together MetaModel A and the Generic Do-
main Ontology to produce a weaving model, WMMMA2GenericDomain, which
would become input with Model A to a transformation program that would produce
the DomainOntologyA (shown in the left side of Figure 5a). Next, We would weave

Generic Domain
Ontology

 weaving program

Domain
Ontology A

WM MMA2GenericDomain

transformation program

Generi Design
Ontology

Design
Ontology A

MetaModel A

Model A

transformation program

 weaving program

WM MMA2GenericDesign

 weaving program

transformation program
Design

Ontology A'

Fig. 5a. Weaving Initial Design A to Ontological Representation A’

96 A.M. Hoss and D.L. Carver

Generic Domain
Ontology

 weaving program

New Domain
Ontology A

WM MMA2GenericDomain

transformation program

Generic Design
Ontology

New Design
Ontology A

MetaModel A

transformation program

 weaving program

WM MMA2GenericDesign

 weaving program

transformation program

Modifications A

Additions to Domain
Ontology A

Design
Ontology A'

Domain
Ontology A'

Additions to Design
Ontology A

 merging program merging program

MetaModel B

 weaving
program

WM GenericDesign2MMB
New Design
Ontology A'

Model B

transformation program

Fig. 5b. Weaving New Requirements Ontological Representation A’

together MetaModel A and the Generic Design Ontology to produce a weaving
model, WMMMA2GenericDesign, which would become input with Model A to a
transformation program that would produce the DesignOntologyA (shown in the right
side of Figure 5a). Finally, we would weave together the DomainOntologyA and
DesignOntologyA to produce the DesignOntologyA’ which contains both design and
domain knowledge woven together. This same process would be repeated to produce
the ontological representations of the “existing program” as a second version of Des-
ignOntologyA’. The two versions of OntologyDesignA’ could be compared to iden-
tify the differences between the initial design and the existing design.

Figure 5b shows how new requirements, Modifications A shown in the center of
the diagram, would be woven into the existing DesignOntologyA’ and DomainOntol-
ogyA’, producing the NewDesignOntologyA’ located near the bottom center of the

 Towards Combining Ontologies and Model Weaving 97

diagram. The bottom right half of Figure 5b shows how NewDesignOntologyA’
would be woven into a different modeling language representation, ModelB, based on
MetaModel B.

In summary, this approach identifies differences between evolved software and ini-
tial requirements and design specifications, detects knowledge dependencies within a
software design, and simplifies requirements and design modifications.

6 Related Research

Several ontological solutions are emerging to address software evolution. One ap-
proach assists the software maintenance processes by using ontologies and automated
reasoning, via description logics, to represent heterogeneous software maintenance
artifacts by creating separate ontologies for source code and documentation (such as
requirements and design) and mapping between them providing query and reasoning
capabilities [40]. This approach provides considerable analysis capabilities but does
not produce evolved artifacts. Much of the related work utilizing ontologies in soft-
ware maintenance focuses on representing software maintenance knowledge. For
example, a software maintenance ontology [41] consisting of high-level maintenance
concepts such as software system, modification processes, computer science skills,
organizational structure, and application specific knowledge provides a unifying
framework for software evolution tool interaction.

The most prevalent application of model weaving in software evolution involves
the use of aspects. Aspect-oriented modeling weaves together design abstractions
such as associations and behavior by extracting common features with the end goal of
improved understanding and maintenance via separation of concerns such as security
and mobility. XWeave [42] is a tool developed to support model evolution by weav-
ing aspect models into non-aspect-oriented metamodels. As an example, XWeave
weaves a FireDetection feature, represented via a FireDectectionSensor, into a meta-
model of a smart home. XWeave can weave instances of the Eclipse Modeling
Framework (EMF) Ecore Metametamodel [43]. The weaving process is based on
matching element names or expressions in both models.

An ontology-based metamodel matching framework [17] addresses the integration
of modeling languages by transforming metamodels to ontologies and then utilizing
ontology matching tools to map between them. As a demonstration, metamodels
based on Ecore are redefined as ontologies based on the Web Ontology Language
(OWL) [44]. A weaving model is created based on a manual mapping process to de-
rive model transformation rules that in turn automate the transformation between
metamodels. The focus of the matching is with metamodel elements and not model
elements.

A Problem Domain Ontology (PDO) [45] is at the heart of a methodology to
extract, organize, and analyze knowledge from requirements documents for soft-
ware-intensive systems written in natural language. The PDO facilitates analysis of
interdependencies among problem domain concepts as well as ontological reasoning
to infer knowledge concerning software assurance. These researchers extend interde-
pendency analysis into an ontology-based information system and knowledge repre-
sentation methodology [46] to identify and analyze intra-domain and cross-domain

98 A.M. Hoss and D.L. Carver

interdependencies within critical infrastructures such as medical facilities, transpor-
tation systems, and communications systems.

Current software reuse research focuses on representing and retrieving software
artifacts such as code, patterns, components, and experience. While patterns share
design knowledge they do not facilitate reasoning with that knowledge nor address
domain knowledge reuse. The KOntoR approach [47] provides both domain knowl-
edge reuse and reasoning capabilities by storing software artifacts in a metadata re-
pository and utilizing ontologies to represent both software design and domain
knowledge. While the KOntoR approach also processes software artifacts specified in
variety of formats, its reuse does not incorporate rule knowledge concerning the rela-
tionships among software design constructs. REBUILDER UML [48] facilitates reuse
of software design knowledge utilizing ontologies and Case-Based Reasoning (CBR).
This tool combines UML class diagrams with domain ontologies to provide users with a
software design knowledge library of problem, solution, and outcome cases. It focuses on
one software modeling language, knowledge reuse only at the object or class diagram
level, and uses ontologies to represent only domain knowledge.

In contrast to the above research, our research:

• considers the evolution of both design and requirements models;
• includes the weaving of both metamodel and model constructs;
• extracts and utilizes domain knowledge buried within models;
• weaves domain and design knowledge; and, lastly,
• facilitates human interaction in the development of weaving models and

therefore in the software evolution process.

7 Conclusion

We presented a method to combine ontologies with model weaving to facilitate the
evolution of abstract software artifacts, such as requirements models, to meet the
challenges of integration with new technologies. This research represents a part of our
ongoing work to implement a system called the Evolution Weaver. Specifically, it
focuses on evolving requirements and design models; reusing software design and
domain knowledge; and integrating multiple software modeling languages for soft-
ware evolution. It approaches these challenges by applying ontological representation
and reasoning to improve the understanding and modeling of software systems; perform-
ing linguistic analysis to identify implicit knowledge of a software system embedded
within software models; and utilizing model weaving concepts to facilitate incremental
software development of models specified using multiple modeling languages.

Our approach extracts design and domain knowledge from source, design, and
requirements models into ontological representations based on the Ontology for Soft-
ware Specification and Design (OSSD) Model and the Suggested Upper Merged On-
tology (SUMO). We create weaving models to integrate evolutionary development
utilizing multiple software modeling languages. The ontological representations retain
both design and domain knowledge between software versions, thereby facilitating
knowledge reuse.

 Towards Combining Ontologies and Model Weaving 99

This research has the potential to provide benefits above and beyond those directly
related to software evolution. It could facilitate the merging and reuse of knowledge
obtained from multiple ontologies developed for a variety of domains. Its economic
benefits include the potential to reduce the software evolution costs that must be in-
curred by organizations incorporating new technologies into existing systems. This
ontological approach could facilitate scalable software development. At the core of
this research, “ontologies inherently are extendable.” [49]. Lastly, we intend to incor-
porate human interaction to guide the ontological reasoning and weaving logic and
therefore facilitate human intellectual control during software evolution.

Our next steps include implementing a proof of concept, the Evolution Weaver,
utilizing open source applications both as components of the software evolution
processing and as test subjects for its verification. The utilization of open source tech-
nologies in this research provides benefits from both a developmental and educational
standpoint. Concerning the former, the Open Source Initiative (OSI) [50] expounds
upon the numerous advantages of open source development and continually strives to
convince the commercial software development world via broadcasting its numerous
successful examples. Open source tools and projects are also becoming recognized as
beneficial in teaching software design [51]. “The use of open-source projects guaran-
tees that the students will have an experience with a software system of realistic size
and complexity” and it “prepares a student better for their future software engineering
career” [52].

References

1. Luqi, Kordon, F.: Advances in Requirements Engineering: Bridging the Gap between
Stakeholders’ Needs and Formal Designs. In: Paech, B., Martell, C. (eds.) Monterey
Workshop 2007. LNCS, vol. 5320, pp. 15–24. Springer, Heidelberg (2008)

2. Maselli, J.: FAA Turns to Smart Cards to Increase Airport Security. InformationWeek
(2002), http://www.informationweek.com/news/software/showArticle.
jhtml?articleID=6501097

3. DeGuzman, M.-L.: Airport Thumbs Up on ID System. ComputerWorld Canada (2007),
http://www.computerworldcanada-digital.com/
computerworldcanada/20070302/?pg=18

4. O’Brien, C.: Irish Software to Detect Airline Threats. ElectricNews.Net Ltd (2006),
 http://www.electricnews.net/news.html?code=9821209

5. Ryder, A.: Analyze-IQ: Machine Learning Software. National University of Ireland, Gal-
way (2008), http://www.nuigalway.ie/nanoscale/analyze_iq.html

6. NSF: New Technologies Could Make Airport Screening More Effective and Less Cumber-
some. NSF Press Release 06-154 (2006), http://128.150.4.107/news/
news_summ.jsp?cntn_id=108133&org=NSF

7. Chikofsky, E., Cross, J.: Reverse Engineering and Design Recovery: A Taxonomy. IEEE
Software 7, 13–17 (1990)

8. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.: Chal-
lenges in Software Evolution. In: 8th International Workshop on Principles of Software
Evolution, CA, pp. 13–22. IEEE Computer Society, Los Alamitos (2005)

9. Berrisford, G.: Why IT Veterans are Sceptical about MDA. In: 2nd European Workshop
on Model Driven Architecture, pp. 125–135, University of Kent, Canterbury, (2004)

100 A.M. Hoss and D.L. Carver

10. Ranganathan, A., Al-Muhtadi, J., Campbell, R.: Reasoning about Uncertain Contexts in
Pervasive Computing Environments. Pervasive Computing 3, 62–70 (2004)

11. Cox, L., Delugach, H.: Dependency Analysis Using Conceptual Graphs. In: 9th Interna-
tional Conference on Conceptual Structures, pp. 117–130, University Laval, Quebec,
(2001), http://ftp.informatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-41/Cox.pdf

12. Canfora, G., Di Penta, M.: New Frontiers of Reverse Engineering. In: 29th International
Conference on Software Engineering, Washington, DC, pp. 326–341. IEEE Computer So-
ciety, Los Alamitos (2007)

13. Mens, T., Van Der Straeten, R.: On the Use of Formal Techniques to Support Model Evo-
lution. In: 1ères Journées sur l’Ingénierie Dirigée par les Modèles, pp. 115–124. Sébastien
Gérard, Jean-Marie Favre, Pierre-Alain Muller, Xavier Blanc (2005)

14. Jarczyk, A., Loeffler, P., Shipman, I.F.: Design Rationale for Software Engineering: A
Survey. In: 25th Annual IEEE Computer Society Hawaii Conference on System Sciences,
pp. 577–586. IEEE, Los Alamitos (1992)

15. Gruber, T.: A Translation Approach to Portable Ontology Specifications. In: Knowledge
Acquisition, vol. 5, pp. 199–220. Academic Press, London (1993)

16. Borst, W.: Construction of Engineering Ontologies. Ph.D. Dissertation, University of
Twente, Enschede (1997)

17. Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A., Seidl, M., Strommer, M., Wimmer,
M.: Matching Metamodels with Semantic Systems – An Experience Report. In: Workshop
Model Management und Metadaten-Verwaltung, pp. 38–52. Verlag Mainz (2007)

18. Woody, P.: What are the differences between a vocabulary, a taxonomy, a thesaurus, an
ontology, and a meta-model?, Metamodel.com (2003),

 http://www.metamodel.com/article.php?story=20030115211223271
19. Ye, J., Coyle, L., Dobson, S., Nixon, P.: Ontology-based models in pervasive computing

systems. In: The Knowledge Engineering Review, vol. 22, pp. 315–347. Cambridge Uni-
versity Press, Cambridge (2007)

20. Lutz, C., Baader, F., Franconi, E., Lembo, D., Möller, R., Rosati, R., Sattler, U., Suntisri-
varaporn, B., Tessaris, S.: Reasoning Support for Ontology Design. In: Coence Grau, B.,
Hitzler, P., Shankey, C., Wallace, E. (eds.) 2nd International Workshop OWL: Experiences
and Directions (2006)

21. Gaitanou, P.: Ontology Semantics and Applications. In: 2nd International Conference on
Metadata and Semantics Research. MTSR Organizing Committee, Corfu (2007)

22. Chen, H., Finin, T., Joshi, A.: An Intelligent Broker for Context-Aware Systems. In: Ubi-
comp 2003, pp. 183–194,Ubicomp, (2003)

23. Chen, H., Perich, F., Finin, T., Joshi, A.: SOUPA: Standard Ontology for Ubiquitous and
Pervasive Applications. In: International Conference on Mobile and Ubiquitous Systems:
Networking and Services, pp. 258–267. IEEE Computer Society, Los Alamitos (2004)

24. Hoss, A., Carver, D.: Ontological Approach to Improving Design Quality. In: IEEE Aero-
space Conference. IEEE, Los Alamitos (2006)

25. Niles, I., Pease, A.: Toward a standard upper ontology. In: 2nd International Conference
on Formal Ontology in Information Systems. ACM Press, New York (2001)

26. Mascardi, V., Cordì, V., Rosso, P.: Comparison of Upper Ontologies. In: Baldoni, M.,
Boccalatte, A., De Paoli, F., Martelli, M., Mascardi, V. (eds.) Conf. on Agenti e industria:
Applicazioni tecnologiche degli agenti software, pp. 55–64 (2007)

27. Miller, G.: WordNet: A Lexical Database for English. Communications of the ACM 38,
39–41 (1995)

 Towards Combining Ontologies and Model Weaving 101

28. Semy, S., Pulvermacher, M., Obrst, L.: Toward the Use of an Upper Ontology for U.S.
Government and U.S. Military Domains: An Evaluation, MITR Corporation (2004),
http://www.mitre.org/work/tech_papers/tech_papers_05/04_1175/
04_1175.pdf

29. Haller, A., Gontarczyk, J., Kotinurmi, P.: Towards a complete SCM Ontology – The Case
of ontologising RosettaNet. In: 23rd Annual ACM Symposium on Applied Computing, pp.
1467–1473. ACM, New York (2008)

30. Soldatova, L., King, R.: An Ontology of Scientific Experiments. Journal of the Royal So-
ciety Interface 3, 795–803 (2006)

31. Latif, K., Tjoa, A.: Combining Context Ontology and Landmarks for Personal Information
Management. In: IEEE International Conference on Computing & Informatics. IEEE, Los
Alamitos (2006)

32. Weeds, J., Keller, B., Weir, D., Wakeman, I., Rimmer, J., Owen, T.: Natural Language
Expression of User Policies in Pervasive Computing Environments. In: OntoLex 2004,
LREC Workshop on Ontologies and Lexical Resources in Distributed Environments.
ACM, New York (2004)

33. Farrar, S., Langendoen, T.: A Linguistic Ontology for the Semantic Web. GLOT Interna-
tional 7, 97–100 (2003)

34. Object Management Group: Model Driven Architecture, V1.0.1, OMG (2003),
 http://www.omg.org/docs/omg/03-06-01.pdf

35. Del Fabro, M., Jouault, F.: Model Transformation and Weaving in the AMMA Platform.
In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 71–77.
Springer, Heidelberg (2006)

36. Del Fabro, M., Bezivin, J., Valduriez, P.: Weaving Models with the Eclipse AMW Plugin.
Eclipse Modeling Symposium, Eclipse Summit Europe 2006, Esslingen (2006),

 http://www.eclipsecon.org/summiteurope2006/presentations/
 ESE2006-EclipseModelingSymposium2_WeavingModels.pdf

37. Smolik, P.: MAMBO Metamodeling Environment. Ph.D. dissertation. Brno University of
Technology, Brno (2006), http://www.mambomde.info/MamboMDE.pdf

38. Noy, N.F., Kunnatur, S., Klein, M., Musen, M.A.: Tracking changes during ontology evo-
lution. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 259–273. Springer, Heidelberg (2004)

39. Noy, N.: Ontology Management with the Prompt Pplugin. In: 7th International Protégé
Conference. Stanford Center for Biomedical Informatics Research, CA (2004), http://
protege.stanford.edu/conference/2004/abstracts/Noy.pdf

40. Witte, R., Zhang, Y., Rilling, J.: Empowering software maintainers with semantic web
technologies. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 37–52. Springer, Heidelberg (2007)

41. Anquetil, N., de Oliveira, K., Dias, M.: Software Maintenance Ontology. In: Ontologies for
Software Engineering and Software Technology, pp. 153–173. Springer, Heidelberg (2006)

42. Groher, I., Voelter, M.: XWeave: Models and Aspects in Concert. In: 10th International
Workshop on Aspect-oriented Modeling, pp. 35–40. ACM Press, New York (2007)

43. The Eclipse Foundation: Eclipse Modeling Framework (2008),
 http://www.eclipse.org/modeling/emf/

44. W3C: Web Ontology Language, OWL (2004), http://www.w3.org/2004/OWL/
45. Lee, S.-W., Muthurajan, D., Gandhi, R., Yavagal, D., Ahn, G.-J.: Building Decision Support

Problem Domain Ontology from Natural Language Requirements for Software Assurance.
International Journal of Software Engineering and Knowledge Engineering 16, 851–884
(2006)

102 A.M. Hoss and D.L. Carver

46. McNally, R.K., Lee, S.-W., Yavagal, D., Xiang, W.-N.: Learning the critical infrastructure
interdependencies through an ontology-based information system. Environment and Plan-
ning B: Planning and Design 34, 1103–1124 (2007)

47. Happel, H., Korthaus, A., Seedorf, S., Tomczyk, P.: KOntoR: An Ontology-enabled Ap-
proach to Software Reuse. In: 18th International Conference on Software Engineering and
Knowledge Engineering, pp. 329–344, Knowledge Systems Institute, IL, (2006)

48. Gomes, P., Leitão, A.P.: A tool for management and reuse of software design knowledge.
In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS, vol. 4248, pp. 381–388. Springer,
Heidelberg (2006)

49. de Bruijn, J.: Using Ontologies: Enabling Knowledge Sharing and Reuse on the Semantic
Web. Technical Report DERI-2003-10-29, DERI – Digital Enterprise Research Institute
(2003)

50. Open Source Initiative (OSI): Creative Commons Attribution 2.5 (2008),
 http://www.opensource.org/

51. Fuhrman, C.: Exploiting Open-source Projects to Study Software Design. Informatics in
Education 6, 53–66 (2007)

52. Buchta, J., Petrenko, M., Poshyvanyk, D., Vaclav, R.: Teaching Evolution of Open-Source
Projects in Software Engineering Courses. In: 22nd IEEE International Conference on
Software Maintenance 2006, pp. 136–144. IEEE Computer Society, Los Alamitos (2006)

Reducing Ambiguities in Requirements Specifications
Via Automatically Created Object-Oriented Models

Daniel Popescu1, Spencer Rugaber2, Nenad Medvidovic1, and Daniel M. Berry3

1 Computer Science Department, University of Southern California, Los Angeles, CA, USA
{dpopescu,neno}@usc.edu

2 College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
spencer@cc.gatech.edu

3 Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
dberry@uwaterloo.ca

Abstract. In industry, reviews and inspections are the primary methods to iden-
tify ambiguities, inconsistencies, and under specifications in natural language
(NL) software requirements specifications (SRSs). However, humans have dif-
ficulties identifying ambiguities and tend to overlook inconsistencies in a large
NL SRS. This paper presents a three-step, semi-automatic method, supported by
a prototype tool, for identifying inconsistencies and ambiguities in NL SRSs. The
method combines the strengths of automation and human reasoning to overcome
difficulties with reviews and inspections. First, the tool parses a NL SRS accord-
ing to a constraining grammar. Second, from relationships exposed in the parse,
the tool creates the classes, methods, variables, and associations of an object-or-
iented analysis model of the specified system. Third, the model is diagrammed
so that a human reviewer can use the model to detect ambiguities and inconsis-
tencies. Since a human finds the problems, the tool has to have neither perfect
recall nor perfect precision. The effectiveness of the approach is demonstrated by
applying it and the tool to a widely published example NL SRS. A separate study
evaluates the tool’s domain-specific term detection.

1 Introduction

The typical industrial software specifier writes software requirements specifications
(SRSs) in a natural language (NL). Even if a final SRS is written in a formal language,
its first draft is usually written in a NL. A NL SRS enhances the communication be-
tween all the stakeholders. However, on the downside, often a NL SRS is imprecise and
ambiguous [3].

Many an organization follows a three-step review process to assess the quality of
a NL SRS and to identify ambiguities and other defects in the NL SRS [35]. First,
assigned reviewers try to find defects in the document. Second, in a meeting of the re-
viewers, all found defects are collected and rated according to their severities. Third, the
reviewed NL SRS and the collected defects are sent back to the authors for corrections.

In this process, the quality of a review of a document is dependent mainly upon
how effectively each human reviewer is able to find ambiguities and other defects in
the document. However, a human reviewer and even a group of them have difficulties

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 103–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

104 D. Popescu et al.

identifying all ambiguities, even when using aids such as checklists. A human reviewer
might overlook some defects while reading a SRS, because he might assume that the
first interpretation of the document that came to his mind is the intended interpretation,
unaware of other possible understandings. In other words, he unconsciously disam-
biguates an ambiguous document [10].

When a NL SRS is large, some ambiguities might remain undetected, because am-
biguities caused by interaction of distant parts of the NL SRS are difficult to detect. In
any one review sessions, only an excerpt of the NL SRS can be reviewed. Any ambi-
guity in the reviewed excerpt that is caused by interaction with a part of the NL SRS
outside the excerpt may not be detectable. Moreover, when a NL SRS is large, lack of
time may prevent some parts of the NL SRS from ever being reviewed. Having a faster
method for conducting reviews would permit larger chunks of the whole NL SRS to be
reviewed at once. It would permit also faster reviews so that more reviews and, thus,
greater coverage of the NL SRS would be possible in any duration.

A controlled, grammar-constrained NL [9, 8] helps to reduce ambiguities by con-
straining what can be said in the NL. One possible grammar rule eliminates passive
voice and, therefore, ensures that the doer of an action is always known. However, a
controlled NL can address only syntactic ambiguity. Semantic ambiguity is beyond its
control.

Because a semantic model omits unnecessary details, it helps to reduce complexity,
and it helps the user to visualize important aspects. Therefore, with the help of a se-
mantic model, a human reviewer can validate larger system descriptions than otherwise.
Moreover, the human reviewer can focus on conceptual correctness and does not need
to worry about the consistent use of concepts and correct grammar usage. Therefore,
if a semantic model can be created of the system specified by a NL SRS, a thorough
review of the NL SRS becomes easier.

Of course, constructing a model bears the risks of introducing new defects and
of the model’s not representing the original NL SRS. Researchers have tried to mit-
igate these risks by using automatic approaches and NL processing (NLP) [32, 25,
12] techniques, ranging in complexity from simple lexical processing [e.g., 7, 41, 40],
through syntactic processing [e.g., 26, 34], all the way through language understanding
[e.g., 11]. A software tool can scan, search, browse, and tag huge text documents much
faster than a human analyst can. Furthermore, a tool works rigorously, decreasing the
risk of overlooked defects and unconscious disambiguation. Each of some of the ap-
proaches tries to build a model from a NL source and may even try to reason about the
content, possibly with assistance from the human user.

However, no automatic NLP tool is perfect. For any NLP tool T , there are utterances
in its NL for which T ’s underlying formalism is not powerful enough to process the
utterances correctly. Generally, the more complex the processing in T , the greater the
chances for not processing an utterance correctly. The measures of correct processing
are recall and precision, which are defined in Section 4.2. For now, recall is a measure
of how much of what T should find it does find, and precision is a measure of how
much of what T does find it should find.

Certainly, the recall and precision of T ’s parser bound T ’s quality. In addition, the
recall and precision of T ’s domain-specific term (DST) identification bound T ’s quality.

Reducing Ambiguities in Requirements Specifications 105

The typical domain has its own terms, abbreviations, and vocabulary. Therefore, a tool
must detect these to create a correct model. Each fully automated tool has difficulty
to create a correct model because it relies on a semantic network that is based on a
predefined domain dictionary. For many a domain, a domain dictionary does not exist. A
semi-automated tool requires its human users to build a domain dictionary while writing
the NL SRS. Clearly, not every requirements engineering (RE) process is so mature that
in it, a domain dictionary is built. Even in a mature process, some domain terms might
be forgotten, because the analysts assume that these terms are widely understood and
recognized.

We have created an approach for helping a specification writer or reviewer identify
ambiguities in a NL SRS, in which the approach tries to address all of the above men-
tioned problems. Hereinafter, the new approach is called our approach to distinguish
it from other approaches. For our approach, we have built a prototype dowsing1 tool,
called Dowser. Dowser is based on one controlled NL. It can create from any NL SRS
an object-oriented (OO) diagram, which can then be assessed by human reviewers.

In the first step, Dowser parses a NL SRS and extracts the classes, methods, and
associations of a textual class model from the NL SRS. In the second step, Dowser dia-
grams the constructed textual class model. In the third step, a human reviewer can check
the generated diagram for signs of defects in the NL SRS. Dowser and our approach
are based on NL processing (NLP) and not on NL understanding. Dowser cannot judge
whether or not the produced model describes a good set of requirements or classes. This
judgement requires understanding. Therefore, in our approach, a human is the final ar-
biter of ambiguity. Because the human is in the loop, Dowser has to have neither perfect
recall nor perfect precision.

To evaluate the effectiveness of our approach, we have implemented a prototype of
Dowser and have tested it on a widely used example SRS, describing an elevator system
[15]. The case study demonstrates the effectiveness of the approach. Since identifying
domain terminology is required for any successful NLP-based approach, we conducted
separate studies to evaluate Dowser’s DST detection. The studies show that our ap-
proach is capable of achieving high recall and precision when detecting DSTs in a
UNIX manual page.

Section 2 discusses related work. Section 3 describes out approach and all of its
components. Section 4 describes validating case studies, and Section 5 concludes the
paper by discussing the results and future work.

2 Related Work

Related work can be divided into four parts: (1) NLP on SRSs, (2) controlled languages,
(3) automatic OO analysis model (OOAM) extraction, and (4) domain-specific term
(DST) extraction.

NLP on SRSs: Kof describes a case study of the application of NLP to extract and
classify terms and then to build a domain ontology [20]. This work is the most similar

1 A dowser is a tool that makes use of domain knowledge in understanding software artifacts
[5].

106 D. Popescu et al.

to our approach. The built domain ontology consists of nouns and verbs, which consti-
tute the domain’s concepts. In the end, the domain ontology helps to detect weaknesses
in the requirements specification. Gervasi and Nuseibeh describe their experiences us-
ing lightweight formal methods for the partial validation of NL SRSs [12]. They check
properties of models obtained by shallow parsing of natural language requirements.
Furthermore, they demonstrate scalability of their approach with a NASA SRS.

Controlled languages: Fuchs and Schwitter developed Attempto Controlled English
(ACE) [9], a sublanguage of English whose utterances can be unambiguously trans-
lated into first-order logic. Over the years, ACE has evolved into a mature controlled
language, which is used mainly for reasoning about SRSs [8]. Juristo et al. developed
other controlled languages, SUL and DUL [17]. For these languages, they defined a
correspondence between linguistic patterns and conceptual patterns. After a SRS has
been written in SUL and DUL, an OOAM can be created using the correspondence.

OOAM Extraction: Several tools exist that automatically transform a SRS into an
OOAM. Mich’s NL-OOPS [26] tool first transforms a parsed SRS into a semantic
network. Afterwards, the tool derives an OOAM from the semantic network. Delisle,
Barker, and Biskri implemented a tool that uses only syntactic extraction rules [6].
Harmain and Gaizauskas implemented another syntax-based tool, and they introduce a
method to evaluate the performance of any such tool [15]. As in our approach, Nan-
duri and Rugaber [29] have used the same parser and had the same initial idea of using
syntactic knowledge to transform a NL SRS into an OOAM. The objective of their ap-
proach was to validate a manually constructed OOAM. Our approach’s main objective
is to identify ambiguity, inconsistency, and underspecification in a NL SRS. The more
restricted objectives of our approach enables a more detailed discussion of the problem
space and contributes (1) a constraining grammar, (2) analysis interpretation guidelines,
(3) additional transformation rules, and (4) DST extraction.

DST Extraction: Mollà et al. developed a method for answering questions in any spec-
ified technical domain. This work recognizes the importance of dealing with specified
technical terminologies in NLP tools that are applied to SRSs [28, 11].

3 Our Approach

The goal of our approach is to reduce the number of ambiguities, inconsistencies, and
underspecifications in a NL SRS through automation. Assuming that automation will
not be perfect, i.e., it will have less than 100% recall and less than 100% precision,
we let a human make the final decision about a potential ambiguity, inconsistency, or
underspecification.

While reading through a NL SRS, an engineer usually builds a mental model of the
described system and reasons about the correct relations of the SRS’s concepts. If an
engineer could only analyze the correctness of a model, instead of having also to create
it, write it down, and then analyze it, he could use his skills and time more effectively.

Reducing Ambiguities in Requirements Specifications 107

Considering that a reviewer could more effectively inspect a model than the complete
NL SRS, we developed an automatic approach based on the following observations:

– Each of most software companies uses a NL SRS [24] to describe a software system
regardless of its domain.

– An OOAM is able to show the most important concepts and relations among the
concepts of a system to build.

– Many an OO design method suggests building an OOAM of a sentence by identi-
fying the parts of the sentence and creating a class from the subject, attributes from
the adjectives, and methods and associations from the verb [1, 30].

Consider the example transformation of the sentence2 The audio player shall play
the music list. into an OOAM; audio player is the subject of the sentence, play is the
verb, and music list is the direct object. This sentence could therefore be modeled as
the diagram:

audio player music list
play

In this example, the adjectives audio and music are not broken out, because each is
part of a DST.

Using this syntax-based method, the typical functional requirement sentence of a
NL SRS can be transformed into an OOAM. Since this heuristic suggests using mostly
syntactic information, the transformation can be automated. A NL parser can create
parse trees of any NL text [34]. The OO design literature gives many rules and heuristics
to transform many a syntactic construct into a textual OOAM. Off-the-shelf software
exists to diagram textual OOAMs [36].

Since NL SRSs are written for a wide range of domains such as medical, technical
or judicial domains, a successful approach must be robust in identifying DSTs. Our
approach addresses this need by using syntactic information and a robust parser with
guessing capability.

The overall quality of any NL SRS can be improved by enforcing the use of a con-
straining grammar. A constraining grammar reduces the possibilities of ambiguities by
constraining the allowed language constructs. At the same time, it increases the quality
of parsing, reduces the number of parses, and results in more precise OOAMs.

Therefore, by using and extending existing technology, we can create a tool that
automatically transforms a NL SRS into an OOAM that helps a human being to identify
ambiguities, inconsistencies, and under specifications in the NL SRS.

2 A sans serif typeface is used for example text, except in a parse tree. Beware of punctuation,
also typeset in the sans serif typeface, at the end of any example. It should not be considered
as punctuation in the containing sentence, which is typeset in the serifed typeface. Sometimes,
two consecutive punctuation symbols appear; the first, typeset in the sans serif typeface ends
an example, and the second, typeset in the serifed typeface is part of the sentence contain-
ing the example. A typewriter typeface is used for example text in any parse tree, in which
monospacing is essential for the correct display of the tree.

108 D. Popescu et al.

Engineering

Constraining
Grammar

Graphical
OOAM

Manual
Review

Domain-Specific Transformation
Rules

Textual
OOAM

Graphical
RenderingTerm DetectionNL Parsing

NL SRS
Manual

Automatic

Requirements

Fig. 1. Flow of the Approach

Figure 1 shows the flow of our approach. First, Dowser parses a NL SRS according
to a constraining grammar. Second, from relationships exposed in the parse, Dowser
creates the classes, methods, variables, and associations of an OOAM of the specified
system. Third, the OOAM is diagrammed so that a human reviewer can use the model
to detect ambiguities, inconsistencies, and underspecifications.

One issue that arises from basing the model building, a semantic process, on a parser,
a syntactic process, is “Why not have its parser report also syntactice ambiguity?”, es-
pecially since whatever parser is used probably can report all parses it finds for any
sentence. In the end, an integrated tool might very well report both syntactic and se-
mantic ambiguities. However, given the wealth of work on syntactic ambiguity [e.g., 4,
7, 18, 25, 41] and the dearth of work on semantic ambiguity, the focus of this work is on
semantic ambiguity. If and when a completely satisfactory approach to identifying se-
mantic ambiguity is found, if it is based on a parser, then certainly that same parser can
be used as the basis for identifying syntactic ambiguity in a single integrated ambiguity
identification tool.

3.1 Constraining Grammar

Any NL allows expressing the same concept in different ways using different syntactic
structures. For example, a sentence in active voice can be translated into passive voice
without changing the semantics or pragmatics. However, passive voice can encourage
ambiguities. For example, the sentence The illumination of the button is activated.
leaves room for different interpretations, because it is not clear who holds the respon-
sibility for activating the illumination. Alternatively, the sentence could be describing
a state. As a consequence, a constraining grammar can be introduced to decrease the
possibility of ambiguity. A constraining grammar enables formal reasoning without the
disadvantages of a fully formal language [8]. A constraining grammar has the other
advantage that it is more amenable to parsing, and extraction rules based on it can be
created more easily.

Observe that the constraining grammar used may bear no relationship with the inter-
nal grammar of the parser used other than sharing the same NL. The goals of the two
grammars are different. A constraining grammar tries to reduce the number of ways

Reducing Ambiguities in Requirements Specifications 109

to say something and to be uniguous3. The goal of a NL parser’s grammar is to be as
general as possible and to recognize any legitimate sentence in the NL. That is, a NL
parser’s grammar is designed to be as ambiguous as is the NL itself.

Our approach uses a constraining grammar that is derived from Juristo et al.’s gram-
mar [17]. They have developed two context-free grammars and an unambiguous map-
ping from these grammars to OOAMs. This mapping is explicitly defined and allows
better model creation than with commonly used heuristics that are justified only intu-
itively. Moreover, the explicit definition enables automation.

Using a constraining grammar influences the style of a NL SRS, because a con-
straint grammar enforces simple sentences. The typical sentence has a basic structure
consisting of subject, verb and object. Furthermore, only simple subclause construc-
tions are allowed, such as conditional clauses, using if, when, velc.4 Therefore, a NL
SRS will contain many short sentences if it is written according to the developed con-
trolled grammar. Shorter, simpler sentences tend to be less ambiguous, because at the
very least, they avoid some coordination and scope ambiguities.

3.2 Natural Language Parsing

Since an OOAM is created automatically from syntactic information, we needed a
parser to extract this information from the NL SRS. The parser we used was devel-
oped by Sleator and Temperley (S&T) at Carnegie-Mellon University [34]. Sutcliffe
and McElligott showed that the S&T parser is robust and accurate for parsing software
manuals [38]. Since software manuals are similar to SRSs [2], the S&T parser looked
promising for our approach. Additionally, the S&T parser was chosen because it is able
to guess the grammatical role of unknown words. This capability is used for the DST
detection, which is described in Section 3.4. However, in principle, any other parser
e.g., The Stanford Parser [19] could be used. Dowser would have to be adjusted to work
with the parser’s output.

The parser is based on the theory of link grammars, which define easy-to-under-
stand rule-based grammar systems. A link grammar consists of a set of words, i.e., the
terminal symbols of the grammar, each of which has one or more linking requirements.
A sequence of words is a sentence of the language defined by the grammar if there exists
a way to assign to the words some links that satisfy the following three conditions:

1. Planarity: the links do not cross;
2. Connectivity: the links suffice to connect all the words of the sequence together;

and
3. Satisfaction: the links satisfy the linking requirements of each word in the sequence.

The link grammar parser produces the links for every such sentence. After parsing, the
links can be accessed through the API of the link grammar parser.

Each established link in a sentence has a link type, which defines the grammatical
usage of the word at the source of the link. The sentence The elevator illuminates the
button. shows three different link types:

3 The coined term “uniguous” means “not ambiguous”.
4 “velc.” means “or others” and is to “vel cetera” as “etc.” is to “et cetera”.

110 D. Popescu et al.

+-------Os------+
+---Ds--+-----Ss----+ +--Ds--+
| | | | |
the elevator.n illuminates.v the button.n .

A D link connects a determiner to a noun, an S link connects a subject noun to its
finite verb, and an O link connects a transitive verb to its object. A small s after the type
of a link indicates that the target of the link is a singular noun.

From this example sentence, the first extraction rule can be derived. If a sentence
contains an S link and an O link, then create a class from the subject noun and one from
the object noun. Afterwards, create a directed association from the subject class to the
object class, which is named by the verb:

elevator button
illuminates

A directed association was chosen over a simple class method, because a directed
association shows also who invokes the action. If the action were modeled as a class
method, the information about who causes the action would have been lost. Using this
rule, Dowser would extract the classes elevator and button and a directed association
illuminates from the elevator class to the button class.

To avoid having two different classes created for elevator and elevators, our ap-
proach incorporates the lexical reference system WordNet [27] to find the stems of
nouns and verbs. Therefore, the name of each created class is the stem of a noun.

One might think that the use of a constrained language would reduce the number of
parses and might even ensure that there is only one per sentence. However, the language
constraints only encourage and do not guarantee uniguity. In general, the link parser
returns multiple parses for any input sentence. For example, When an elevator has
not to service any requests, the elevator remains at its final destination and the
doors of the elevator are closed. returns 16 parses. However, as the link grammar
homepage [39] says, “If there is more than one satisfactory linkage, the parser orders
them according to certain simple heuristics.” In our experience, these heuristics selected
as first our preferred parse. Of courser, these simple heuristics cannot be expected to
always select the parse that the writer intended, because syntactic ambiguity is a hard
problem. Even humans have to rely on semantic understanding and context to resolve
difficult cases of syntactic ambiguity, e.g., the classic The boy saw the man with the
telescope..

3.3 Transformation Rules

Transformation rules bridge the gap between the extracted syntactic sentence informa-
tion and the targeted OOAM. Each transformation rule describes how a combination
of words of identified grammatical roles can be transformed into classes, associations,
attributes, and methods.

Reducing Ambiguities in Requirements Specifications 111

The transformation rules Dowser uses were derived from Juristo et al.’s grammar
[17], the OO methods literature [29, 30], and conducted experiments. In total, Dowser
uses 13 transformation rules. The five most frequently used are the following:

1. The most frequently applicable rule is the first extraction rule, described in Section
3.2. If a parsed sentence contains a subject and an object link, then create two
classes with a directed association named after the verb.

2. Aggregations are an important notion in UML class diagrams. One rule for extract-
ing aggregations is similar to the first rule. The major difference is the verb. This
rule is applicable only if the parsed sentence contains a subject and an object link
and the verb stem is one of have, possess, contain, or include. In that case, the
object is aggregated to the subject.

3. Sometimes, a subclause describes a system action without the need of an object,
particularly, if the system reacts to a given event, e.g., If the user presses the
button, the elevator moves.. An event clause starts with an if or when. If Dowser
detects an event clause, and the main clause has only a subject link, then a class
from the subject link noun is created and the verb is added to the new class as a
method.

4. A genitive attribute indicates two classes with an aggregation, e.g., The system
stores the name of the customer. or The system stores the customer’s
name.. If Dowser detects a genitive, it creates two classes with one linking aggre-
gation. For either example, Dowser would create a class customer, and it would
aggregate the class name to the class customer; name could have been modeled
as an attribute. However, other sentences in the specification would add methods
to the class name later. Therefore, with the syntactic information of only one sen-
tence, it cannot be decided if name is an attribute or an aggregated class. This rule
needs to be constrained by semantic information. For example, Dowser should not
apply this rule to the sentence The user enters the amount of money.. Although
amount is a noun, the class amount is not desired in this case.

5. Although active clauses are preferred in NL SRSs, passive clauses are still needed.
They are used to describe relations and states, e.g. as in A husband is married to
his wife.. From this sentence, two classes are created, from the subject noun and
the noun of the prepositional phrase. The passive verb and the connecting word to
link the prepositional phrase described with the association.

Dowser applies two post-processing rules after it executes all possible transformation
rules.

The first post-processing rule converts all classes that are aggregated to another class
into attributes of that other class. Only a class that lacks any attribute, method, or in-
coming or outgoing association is transformed. For example, one rule described above
extracts two classes and one aggregation from the sentence The system stores the
name of the customer.. The rule creates a class name and a class customer. How-
ever, the class name has probably no method or association. Therefore, if a class con-
tains no method after all rules have been applied, it is transformed into an attribute of
the class customer.

112 D. Popescu et al.

The second post-processing rule removes the class system from the OOAM, since
all other classes together form the system; system is not a class, because it cannot be
a subpart of itself.

The full set of rules, a user’s manual for Dowser, and other details may be found at
the Web site, http://www.cc.gatech.edu/projects/dowser/.

3.4 Domain-Specific Terms

In order to build the correct classes into the OOAM of a NL SRS, our approach has to be
able to detect DSTs. If Dowser were to extract only the concept button from elevator
button, Dowser would be identifying an incorrect term.

To achieve high DST recall, the parser could access a special domain data dictionary.
However, for each of most domains, such a data dictionary does not exist. Software is
built for financial, medical, technical, and other domains. Creating a domain dictionary
for each of these rich domains is complex and difficult. Additionally, the customer of
a software application might prefer to use her own terms for describing her product. A
product could have arbitrarily chosen names, such as DNAComp07. Therefore, even if
a domain dictionary exists for a NL SRS, DST detection remains a challenge.

The link types of the link grammar parse can be used to identify DSTs. The typical
DST happens to be built from an attributive noun or a proper noun. Therefore, in a link
grammar parse, the AN link, denoting an attributive noun, and the G link, denoting a
proper noun, help to identify DSTs.

Consider the link grammar parse of the sentence The RS7 business plan is due
in May.:

+---------Ds---------+
| +-------AN-------+
| | +---AN---+--Ss-+-Pa-+-MVp+-IN+
| | | | | | | |
The RS7 business.n plan.n is.v due.a in May

Thus, RS7 business plan is a domain-specific term.
A parser typically has problems parsing words that are not in its internal dictionary.

However, the S&T link grammar parser has a guessing mode, in which it can guess the
syntactic role of an unknown term. Therefore, it is often able to guess the syntactic role
of an unknown term, improving its DST recall.

Since DST detection is essential for transforming a NL SRS into an OOAM, we con-
ducted a study, described in Section 4.2, about the recall and precision of our approach.

3.5 Diagramming OOAMs

The previous steps are able to create a textual OOAM. However, it is easier for a human
to understand a graphical OOAM than a textual OOAM. Using the approach described
by Spinellis [36], an extracted textual OOAM is diagrammed. The tool UMLGraph
[37] transforms a textual description into a dot file, which the tool Graphviz [13] can
transform into any of some popular graphic formats, such as JPEG, GIF, or PNG.

http://www.cc.gatech.edu/projects/dowser/

Reducing Ambiguities in Requirements Specifications 113

3.6 Interpretation of OOAM

In the last step of our approach, a human analyst checks the created diagram for ambi-
guities.

Some ideas that a human analyst can use to find defects in an OOAM are:

– An association is a hint for possible ambiguities. For example, suppose that each of
two different classes sends a message to the same target class. The analyst should
check that the two different classes actually are to communicate with the same
target class. If a motion sensor activates one type of display, and a smoke detector
activates another type of display, then the class diagram should reflect this situation
with two different display classes.

– Each class should reflect one and only one concept. For example, the analyst should
check that book and textbook are really two different classes when Dowser does
not create a generalization of these two classes.

– If a class has an attribute, but the attribute is not of a primitive type, such as string
or number, then the definition of the attribute might be missing in the original text.
After a definition is added, the attribute should be represented by its own class.

– If a class has no association, then the class might be underspecified, as there are no
relations or interactions between the class and other classes.

3.7 Limitations of Method

Observe that the OOAM is a model of only static relationships among the concepts
mentioned in the parsed NL SRS. We have not attempted to apply our approach to
modeling behavior.

4 Studies

This section describes the case studies in which we evaluated the effectiveness of our
approach in helping an analyst to identify ambiguities, inconsistencies, and underspec-
ifications in a NL SRS and in which we evaluated Dowser’s effectiveness at DST iden-
tification.

4.1 Elevator Case Study

To evaluate the effectiveness of our approach, we implemented Dowser and applied it to
an example NL SRS that we call “the ESD”. The ESD describes the control software for
an elevator system [16]. The ESD was chosen, because it could be the NL SRS of a real
industrial system. At the same time, the ESD is short enough to completely described
in this paper. Moreover, the ESD happens to contain enough defects that it illustrates
the defect types that can be revealed with the help of Dowser.

The original ESD was:

An n elevator system is to be installed in a building with m floors. The eleva-
tors and the control mechanism are supplied by a manufacturer The internal
mechanisms of these are assumed (given) in this problem.

114 D. Popescu et al.

Design the logic to move elevators between floors in the building according
to the following rules:

1. Each elevator has a set of buttons, one button for each floor. These illumi-
nate when pressed and cause the elevator to visit the corresponding floor.
The illumination is cancelled when the corresponding floor is visited (i.e.,
stopped at) by the elevator.

2. Each floor has two buttons (except ground and top), one to request an up-el-
evator and one to request a down-elevator. These buttons illuminate when
pressed. The buttons are cancelled when an elevator visits the floor and
is either travelling the desired direction, or visiting a floor with no requests
outstanding. In the latter case, if both floor request buttons are illuminated,
only one should be cancelled. The algorithm used to decide which to serve
first should minimize the waiting time for both requests.

3. When an elevator has no requests to service, it should remain at its final
destination with its doors closed and await further requests (or model a
“holding” floor).

4. All requests for elevators from floors must be serviced eventually, with all
floors given equal priority.

5. All requests for floors within elevators must be serviced eventually, with
floors being serviced sequentially in the direction of travel.

First, we applied Dowser tool to the original unmodified ESD, which was not writ-
ten according to any constraining grammar. Since the transformation rules have been
created assuming that the analyzed text conforms to a constraining grammar, applying
Dowser to the original ESD resulted in a diagram with only five classes such as these
and set. None of these classes describes any domain concepts of the ESD.

To successfully apply Dowser to the ESD, the ESD had to be rewritten sentence-
by-sentence to conform to the constraining grammar. No information was added or
removed from the original ESD during the rewriting. Therefore, the rewriting did not
introduce any new defects, which would have adulterated the results of the case study.

The rewritten ESD is:

An n elevator system is to be installed in a building with m floors.

1. Each elevator has buttons. Each elevator has one button for each floor.
When a user presses a button, the elevator illuminates the button and the
elevator visits the corresponding floor. When the elevator visits a floor, the
elevator cancels the corresponding illumination.

2. Each floor has two buttons. (except ground and top). If the user presses the
up-button, an up-elevator is requested. If the user presses the down-but-
ton, a down-elevator is requested. If the user presses a button, this button
becomes illuminated. When an elevator visits a floor, the elevator cancels
the corresponding illumination of the button in the desired direction. The
system minimizes the waiting time.

3. When an elevator has not to service any requests, the elevator remains at
its final destination and the doors of the elevator are closed. The elevator
then awaits further requests.

Reducing Ambiguities in Requirements Specifications 115

4. The elevators service all requests from floors with equal priority eventually.
5. If a user presses a button within the elevator, the elevator services this

request eventually in the direction of travel.

Applying Dowser to the new ESD resulted in the diagram of Figure 2. Dowser created
an OOAM containing 14 partially connected classes with attributes and methods.

building

button

illuminated

illumination

door

closed

down_button

down_elevator

requested

elevator

remain()

floor

visit

cancel

request

await service

elevator_system

installed_in

up_button

up_elevator

requested

user

press press press

waiting_time

minimize()

Fig. 2. OOAM of the ESD

The graphically rendered OOAM does not reveal defects on its own. By applying the
guidelines described in Section 3.6, we identified four conceptual defects in the OOAM,
which could be traced back to the original ESD.

1. The diagram shows classes up-elevator and down-elevator. Neither class has any
connection to any other class, and neither has any association to the class eleva-
tor. Furthermore, the up-elevator class has an attribute requested, while eleva-
tor serves a request indicates that each of up-elevator and down-elevator is a
specialization of elevator. All of this information indicates that neither concept,
up-elevator nor down-elevator, is defined enough in the original ESD.

2. The class door in the diagram contains the attribute closed. However, the class has
no method to manipulate this state. If closing and opening the door are within the
scope of the system, then it is clear that the concept door is not defined enough in
the original ESD.

3. In the ESD, each of the floor and the elevator has buttons. Therefore, each of the
class elevator and the class floor should have an aggregated class button in the
OOAM. However, the diagram indicates that both have the same type of button.
Since a button in an elevator and a button in a floor have different behaviors, it
is unlikely that the same class describes both types of buttons. Generalizing both
types to a single class button could therefore lead to misinterpretations. Defining
concepts elevator button and floor button would resolve this ambiguity and en-
hance the clarity of the ESD.

116 D. Popescu et al.

4. Each of the classes up-button and down-button is connected to only the class
user in the OOAM. Since a user is an actor in the system, the diagram does not
clarify where button belongs. The location can be derived from the ESD, because
button is mentioned in the paragraph that mentions floor. However, it should not
be necessary to use this fact. Therefore, each concept should be specified in more
detail in the ESD to reduce the ambiguity in the specification.

This case study shows how Dowser can help an analyst identify defects in a NL
SRS. If a constraining grammar is used to write a NL SRS, our approach can help
detect ambiguities, inconsistencies, and underspecifications.

4.2 DST Detection Quality

The case study in Section 4.1 shows the importance of detecting DSTs. For the ESD,
Dowser needed to be able to detect DSTs such as floor button, elevator button, or
down elevator. If Dowser were to extract only the terms button and elevator from the
ESD, it would create wrong classes and associations.

Section 3.4 explains how Dowser relies on syntactic information to identify DSTs. To
measure Dowser’s DST detection capability, we conducted a separate study. To measure
Dowser’s DST detection, the metrics recall and precision were calculated of Dowser’s
extraction of DSTs from a user’s manual. These metrics are used to evaluate the success
of many NLP tools [14] :

– Recall measures how well a tool identifies desired pieces of information in a source:

Recall =
Icorrect

Itotal
(1)

Here Icorrect is the number of correctly identified desired pieces of information in
the source text and Itotal is the total number of desired pieces of information in the
source text.

– Precision measures how accurately a tool identifies desired pieces of information
in a source:

Precision =
Icorrect

Icorrect + Iincorrect
(2)

Here Icorrect is as for Recall and Iincorrect is the number of incorrectly identified
desired pieces of information in the source text.

We chose the intro man page of the Cygwin environment with which to measure
recall and precision of Dowser’s DST detection. A manual page seems to be a suitable
experiment source, because it is a technical document with a large number of DSTs.

The steps of the experiments are as follows.

1. We manually identified every DST, a noun or a compound noun, from the intro man
page. The intro man page contains 52 terms like Cygwin, Linux-like environment,
Linux API emulation layer, and POSIX/SUSv2. The 52 terms consists of 33 sin-
gle-noun terms and 19 compound-noun terms.

Reducing Ambiguities in Requirements Specifications 117

2. For the first experiment, the link grammar parser extracted every term out of the
intro man page without the capability of extracting compound-noun terms. It rec-
ognized 31 of the single-noun terms and none of the compound-noun terms. There-
fore, it reached a recall value of 59.6% for all terms and of 93.9% for single noun
terms.

3. For the second experiment, compound-noun term detection was added to the link
grammar parser. After this, the tool recognized 10 compound-noun terms. As the
single-noun terms detection rate stayed the same, the tool recognized 41 terms.
Therefore, it reached a recall value of 78.8%.

Afterwards, the undetected terms were examined. It turned out that five terms were
undetected because they appeared in grammatically obscure or wrong parts in the sen-
tence. Correcting these sentence, increased the detected terms to 46 and the recall value
to 88.46%.

The five not identified terms were (1) case-insensitive file system; (2) intro man
page; (3) Linux look and feel; (4) Red Hat, Inc.; and (5) User’s Guide. The term
Red Hat, Inc. is not recognized because of the comma, User’s Guide cannot be de-
tected syntactically, because if every genitive were part of a term, it would lead to an
over-generation of terms. Linux look and feel is not recognized because of the conjunc-
tion and in the term. Case-insensitive file system and intro man page can be only
partially detected, because case-insensitive is an adjective, which is only sometimes
part of a term. Another example demonstrates the difficulties caused by adjectives. In
readable manual, only manual is a term in most cases. Using every adjective as part
of the term would lead to an overgeneration of terms. The term intro man page is not
recognized because the link grammar parser guesses that intro is an adjective. However,
if it is planned that case-insensitive file system is a concept within a SRS, then writ-
ing it with initial upper-case letters would allow the link grammar parser to detect it as
a proper noun, and thus as a DST.

Dowser extracted seven wrong terms, since it created wrong terminology for the
incompletely detected terms, e.g., it extracted the term man page instead of intro man
page. Overall, Dowser reached a precision value of 86.79% on the intro man page.

The DST detection experiment shows that using only syntactic information from the
link grammar parser allows a fairly high DST detection rate.

4.3 Monterey Workshop Airport Security Case Study

As a second case study, we have applied Dowser to the workshop case study, here
called WSCS, taken from the 2007 Monterey Workshop on Innovations for Require-
ments Analysis: From Stakeholder Needs to Formal Designs [22]. Unlike the case study
reported in Section 4.1, the WSCS was not written as a SRS. The WSCS is a transcript
of a discussion about airport security by three principal stakeholders: the Transporta-
tion Security Administration (TSA), the Federal Aviation Administration (FAA), and
Airport Screening and Security (ASS). No stakeholder in the discussion even attempts
to be correct, complete, and consistent. While no real SRS is correct, complete, and
consistent, at least an SRS’s authors try to make it so. One’s goals in any writing effort
affect the output.

118 D. Popescu et al.

The first step was rewriting the sentences of the WSCS discussion transcript to meet
the constraints of the constraining grammar. The first main change was to make each
sentence active [31]. The WSCS’s domain is familiar enough to the man-in-the-street
that we had no problems identifying each doer. In the normal industrial case, we would
have asked the client for this information. The second main change was to remove each
modal verb, such as can in can deal that consists of a modal verb followed by a main
verb. A modal verb has no real effect on the OOAM to be built; the main verb carries all
the meaning. There were some so-called sentences of the transcript that had to be made
into more than one sentence. There were portions of the transcript that defied rewriting.
They were simply left out.

The revised transcript had 65 sentences, and they were submitted to Dowser. The
Dowser tool was able to parse and extract information out of 58 of these sentences, for
an 89% acceptance rate, leaving 7 unaccepted sentences.

Since Dowser listed each unaccepted sentence, we were able to perform an additional
detailed manual analysis. By creating the link-grammar parse of each sentence, we
were able to compare the created links to the rules and found the reason for Dowser’s
rejection of the sentence. The reasons can be categorized into three types.

1. The link-grammar parser was not able to guess the correct syntactic role of a word
in the sentence,

2. Dowser’s rules were not refined enough to handle the sentence, or
3. the sentence was underspecified.

We rewrote each of the 7 sentences, keeping the semantics consistent with sentence’s in-
tent while clarifying underspecfications. We chose to rewrite the not accepted sentences,
because this strategy is the easiest way for an analyst to achieve a 100% acceptance rate
with Dowser.

The final list of sentences from which Dowser can parse and extract information is
given by the transcript below. Note that neither the first 5 lines nor any line with a three-
letter acronym for a stakeholder followed by a colon were submitted to Dowser. These
help the reader see the correspondence to the original transcript.

Case Study: Air Traveling Requirements Updated (Blog scenario)
Participants:
Transportation Security Administration (TSA)
Federal Aviation Administration (FAA)
Airport screening and security (ASS)

FAA:
Airline passengers not take liquids on board.
We increase security following the recent foiled UK terrorist plot.
We develop technologies that screen for chemicals in liquids.
You know backscatter.

ASS:
Technologies that work in laboratories cause false alarms when used dozens of times in
daily screening.

Reducing Ambiguities in Requirements Specifications 119

Technologies are not ready for deployment.

FAA:
False positives help us to stay alive.
You be more alert.
ASS miss guns and knives packed in carry-on luggage.

ASS:
ASS moves 2 million passengers through US airports daily.
ASS not remain alert to rare events.

TSA:
TSA deal with it.
You take frequent breaks.
As a test, TSA will impose the image of a weapon on a normal bag.
ASS learns that the image of a weapon appear on a normal bag.
Solutions will be a combination of machine intelligence and human intelligence.

ASS:
ASS take breaks.
ASS get inspected.
ASS not get annual surprise tests.
ASS gets tests every day.
If a screener misses too many tests consistently, he is sent to training.

TAS:
TSA and ASS and FAA take proactive steps to prevent another attack.
We only react. We do not anticipate.
If someone uses a box cutter to hijack a plane, then passengers not take box cutters on
board.
If someone hides explosives in his shoes, then ASS x-ray everyone’s
shoes and ban matches.

FAA:
For each dollar an attacker spends, FAA spends a thousand dollars.
There are no easy solutions.
FAA federalizes checkpoints.
FAA brings in more manpower.
FAA brings in more technology.

TSA:
We plan responses in advance.
Nobody needs a metal object to bring down an airliner.
Nobody needs even explosives to bring down an airliner.
Everything on an airplane burns.

120 D. Popescu et al.

Passengers not burn.
Technologies detect oxydizers.
Screeners learntodetect oxydizers.

FAA:
Airlines take the lead on aviation security.
Airlines marketed cheap tickets.
Airlines passed security off on the federal government.
Security officers be on every flight.
Retrain flight attendants as security officers.
We cannot give passengers soda and peanuts.
Passing around soda and peanuts should be secondary.

ASS:
A lot of airlines are not doing well.
A lot of airlines are on government assistance.
Airlines raise prices.
Airlines mishandle baggage.
The TSA changes screening rules constantly.
Anything radical costs a lot of money.
Anything radical deters people.
An economic threat is also a threat.

TSA:
TSA enforce consistency in regulations.
TSA enforce consistency in regulations’ application.
Airline bankruptcy has advantages.
Bankruptcy makes it easier to rearrange company assets.
Bankruptcy makes it easier to renegotiate vendor contracts.
Bankruptcy makes it easier to renegotiate supplier contracts.

FAA:
TSA, FAA, and ASS have productive discussions.
TSA, FAA, and ASS get back to work.
TSA, FAA, and ASS come up with concrete measures.
TSA, FAA, and ASS generate some ROI.
The above examples are not all-inclusive.

In the end, after obtaining sentences that are acceptable to Dowser, we decided not
to try to analyze the generated OOAM. In any case, the sentences do not even begin
to form a correct, complete, and consistent SRS. So there is little point in discovering
ambiguities. The set of sentences itself is ambiguous because there are unbounded ways
to complete them into a SRS. Indeed, Dowser was never intended to be used in the part
of RE in which this sort of raw requirements information is analyzed.

Reducing Ambiguities in Requirements Specifications 121

Nevertheless, the exercise of rewriting the sentences to be acceptable to Dowser was
valuable in making the intent of the sentences clearer to any reader. It forced us to
identify the doers of each activity that was specified in a passive sentence. It forced
us to grapple with the meaning of many a phrase that is used in normal conversation
that really have no effect on any OOAM. It forced us to find simpler ways to express
things that had been expressed in the normal sloppy way of everyday conversation. The
result was, in our opinion, a much cleaner set of sentences. Learning how to write these
cleaner sentences may be the most valuable effect of the use of Dowser.

This exercise exposed some limitations of the current version of Dowser. Note that
there are two sources of limitations, (1) what the link grammar can parse and (2) what
the Dowser rules can handle to construct an OOAM from the results of the parse. It was
fairly easy to rewrite the sentences so that they could be accepted by the parser. It was
more difficult to get Dowser to handle parsed sentences. In each case that Dowser did
not accept a construct, the choices were (a) to modify existing Dowser rules or to add
new Dowser rules to deal with the construct or (b) to change the containing sentence to
avoid the construct. If we could see the effect on OOAMs of the construct, we took the
first choice. If not, we took the second choice.

The two main limitations that we discovered are of the second kind. The current
version of Dowser cannot deal with modal verbs and with negations, e.g., not. Because
we could not see their effect on OOAMs, we would take the second choice response.
Because we did not analyze the model, this response was applied only for the modal
verbs in the last version of the sentence. That is, the nots are still there. One possible
treatment of a not is to build the normal graph with the verb labeling the arc and putting
a not by the verb to indicate a misuse case [33].

5 Discussion and Conclusion

Dowser, a tool built mostly out of existing software, is able to help a human analyst to
identify ambiguity, inconsistency, and underspecification in a NL SRS.

Of course, Dowser’s lack of perfection, particularly in the construction of an OOAM
and in the DST recall, says that Dowser can be used as only one of an array of ap-
proaches and tools for identifying DSTs and for detecting ambiguity, inconsistency,
and underspecification in NL SRSs. However, because of the inherent difficulty of these
tasks for humans, every little bit helps!

One drawback of the approach is that for best results, the input should be written in
the constrained language. If the actual input is not written in the constrained language,
it must be rewritten. This rewriting necessity might be considered a reason not to use
Dowser. However, one could argue that the rewriting is part of the whole process of
eliminating ambiguity, which ultimately the human carries out.

5.1 Future Work

The lack of perfection says that more work is needed:

– How does Dowser perform on larger, industrial-strength NL SRSs? Answering this
question would help to explore the problem space and to find new unsolved research
questions.

122 D. Popescu et al.

– The current Dowser cannot resolve anaphora. An anaphor is a linguistic unit, such
as a pronoun, that refers to a previous unit. In The customer can buy text books
and return them., them is an example of an anaphor, which must be resolved to
text books. While Dowser can identify anaphora, it cannot resolve them. A simple
solution would be to have Dowser flag all anaphora in its input text, so a human
analyst could change each to its resolution.

– DST identification can be improved. As mentioned above, syntactic information
is not sufficient to detect all the DSTs within a document. Therefore, frequency
analysis or baseline text analysis [21] might improve DST identification.

– Additional semantic knowledge could improve the capability of Dowser. For exam-
ple, the WordNet lexicon contains information about hypernyms, which can indicate
superclasses, and meronyms, which can indicate aggregations. This information
could be used to supply missing links in an OOAM. However, although WordNet
is a large online lexicon, it lacks DSTs and therefore might be only a little help.
Extending Dowser’s dictionary with DSTs could reduce this problem.

– The current Dowser is not applicable to a NL SRS that has a functional language
style, i.e., with sentences such as, The system must provide the functional-
ity of.... Handling such sentences would require a different grammar. Future work
could examine which grammar is the most suitable for class extraction.

– The UML offers a set of different diagram types. NLP could be used to create
sequence, state, or other diagrams. For example, Juristo et al. [17] developed also
a controlled grammar for specifying dynamic behavior.

– Other work has found different sources of ambiguities in NL SRS. Since there
seems not to be a single perfect approach, different approaches (e.g. [7, 23, 41])
could be integrated into a single framework for validating NL SRSs. This inte-
gration could lead to a new method of developing NL SRSs. Indeed, this sort of
integration would deal with any syntactic ambiguities found by the parser that is
used.

Acknowledgments

The authors thank the anonymous referees for some really helpful suggestions. Daniel
Berry’s, work was supported in part by Canadian NSERC Grant Number NSERC-
RGPIN227055-00.

References

[1] Abbott, R.J.: Program Design by Informal English Descriptions. Comm. ACM 26, 882–894
(1983)

[2] Berry, D.M., Daudjee, K., Dong, J., Fainchtein, I., Nelson, M.A., Nelson, T.: Users’ Manual
as a Requirements Specification: Case Studies. Requir. Eng. J. 9, 67–82 (2004)

[3] Berry, D.M., Kamsties, E.: Ambiguity in Requirements Specification. In: Leite, J.C.S.P.,
Doorn, J. (eds.) Perspectives on Requirements Engineering, pp. 7–44. Kluwer, Boston
(2004)

Reducing Ambiguities in Requirements Specifications 123

[4] Bucchiarone, A., Gnesi, S., Pierini, P.: Quality Analysis of NL Requirements: An Industrial
Case Study. In: 13th IEEE International Conference on Requirements Engineering (RE
2005), San Diego, CA, USA, pp. 390–394. IEEE Comp. Soc. Press, Los Alamitos (2005)

[5] Clayton, R., Rugaber, S., Wills, L.: Dowsing: A Tools Framework for Domain-Oriented
Browsing Software Artifacts. In: Automated Software Engineering Conference, Honolulu,
HI, USA, pp. 204–207 (1998)

[6] Delisle, S., Barker, D., Biskri, K.: Object-oriented Analysis: Getting Help from Robust
Computational Linguistic Tools. In: Friedl, G., Mayr, H.C. (eds.) Application of Natural
Language to Information Systems, Oesterreichische Computer Gesellschaft, Vienna, Aus-
tria, pp. 167–172 (1999)

[7] Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The Linguistic Approach to the Natural Lan-
guage Requirements, Quality: Benefits of the use of an Automatic Tool. In: 26th Annual
IEEE Computer Society-NASA GSFC Software Engineering Workshop, San Diego, CA,
USA, pp. 97–105. IEEE Comp. Soc. Press, Los Alamitos (2001)

[8] Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto Controlled English (ACE) Language
Manual, Version 3.0. Tech. Rept. 99.03, Dept. Computer Science, U. Zurich (1999)

[9] Fuchs, N.E., Schwitter, R.: Attempto Controlled English (ACE). In: 1st International Work-
shop On Controlled Language Applications (CLAW), Leuven, Belgium, pp. 124–136
(1996)

[10] Gause, D., Weinberg, G.: Exploring Requirements: Quality Before Design. Dorset House,
New York (1989)

[11] Gemini Natural-Language Understanding System,
http://www.ai.sri.com/natural-language/projects/arpa-sls/
nat-lang.html

[12] Gervasi, V., Nuseibeh, B.: Lightweight Validation of Natural Language Requirements.
Softw., Pract. & Exper. 32, 113–133 (2002)

[13] Graphviz–Graph Visualization Software Home Page,
http://www.graphviz.org/Credits.php

[14] Grishman, R.: Information Extraction: Techniques and Challenges. In: Pazienza, M.T. (ed.)
SCIE 1997. LNCS, vol. 1299. Springer, Heidelberg (1997)

[15] Harmain, H.M., Gaizauskas, R.J.: CM-Builder: A Natural Language-Based CASE Tool for
Object-Oriented Analysis. Autom. Softw. Eng. 10, 157–181 (2003)

[16] Heimdahl, M.: An Example: The Lift (Elevator) Problem,
http://www-users.cs.umn.edu/heimdahl/formalmodels/
elevator.htm

[17] Juristo, N., Moreno, A.M., Lopez, M.: How to Use Linguistic Instruments For Object-
Oriented Analysis. IEEE Softw. 17, 80–89 (2000)

[18] Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for Tools for Ambiguity
Identification and Measurement in Natural Language Requirements Specifications. Requir.
Eng. J. 13, 207–239 (2008)

[19] Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: 41st Meeting of the Asso-
ciation for Computational Linguistics, pp. 423–430. Assoc. for Computational Linguistics,
Morristown (2003)

[20] Kof, L.: Natural Language Processing for Requirements Engineering: Applicability to
Large Requirements Documents. In: Russo, A., Garcez, A., Menzies, T. (eds.) Workshop
on Automated Software Engineering, Linz, Austria (2004)

[21] Lecoeuche, R.: Finding Comparatively Important Concepts between Texts. In: 15th IEEE
international Conference on Automated Software Engineering, pp. 55–60. IEEE Comp.
Soc. Press, San Diego (2000)

http://www.ai.sri.com/naturallanguage/projects/arpa-sls/nat-lang.html
http://www.ai.sri.com/natural-language/projects/arpa-sls/nat-lang.html
http://www.graphviz.org/Credits.php
http://www-users.cs.umn.edu/heimdahl/formalmodels/elevator.htm
http://www-users.cs.umn.edu/heimdahl/formalmodels/elevator.htm

124 D. Popescu et al.

[22] Luqi, Kordon, F.: Advances in Requirements Engineering: Bridging the Gap between
Stakeholders’ Needs and Formal Designs. In: Paech, B., Martell, C. (eds.) Monterey Work-
shop 2007. LNCS, vol. 5320, pp. 15–24. Springer, Heidelberg (2008)

[23] Mich, L.: On the Use of Ambiguity Measures in Requirements Analysis. In: Moreno, A.,
van de Riet, R. (eds.) 6th International Conference on Applications of Natural Language to
Information Systems (NLDB 2001). LNI, vol. 3, pp. 143–152. Gesellschaft für Informatik,
Bonn (2001)

[24] Mich, L., Franch, M., Novi Inverardi, L.: Market Research for Requirements Analysis Us-
ing Linguistic Tools. Requir. Eng. J. 9, 151 (2004)

[25] Mich, L., Garigliano, R.: Ambiguity Measures in Requirements Engineering. In: Interna-
tional Conference on Software–Theory and Practice (ICS2000), 16th IFIP World Computer
Congress, pp. 39—48, Publishing House of Electronics Industry, Beijing, China (2000)

[26] Mich, L., Garigliano, R.: NL-OOPS: A Requirements Analysis Tool Based on Natural Lan-
guage Processing. In: 3rd International Conference on Data Mining Methods and Databases
for Engineering. Witpress, Southampton, UK (2002)

[27] Miller, G.A., Felbaum, C., et al.: WordNet Web Site. Princeton U., Princeton, NJ, USA,
http://wordnet.princeton.edu/

[28] Mollá, D., Schwitter, R., Rinaldi, F., Dowdall, J., Hess, M.: ExtrAns: Extracting Answers
from Technical Texts. IEEE Intelligent Syst 18, 12–17 (2003)

[29] Nanduri, S., Rugaber, S.: Requirements Validation via Automated Natural Language Pars-
ing. J. Mgmt. Inf. Syst. 12, 9–19 (1996)

[30] Rumbaugh, J.: Object-Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs
(1991)

[31] Rupp, C., Goetz, R.: Linguistic Methods of Requirements-Engineering (NLP). In: Eu-
ropean Software Process Improvement Conference (EuroSPI), Copenhagen, Denmark
(2000), http://www.iscn.com/publications/#eurospi2000

http://wordnet.princeton.edu/
http://www.iscn.com/publications/#eurospi2000

Innovations in Natural Language Document
Processing for Requirements Engineering�

Valdis Berzins, Craig Martell, Luqi, and Paige Adams

Naval Postgraduate School, 1411 Cunningham Road, Monterey, California 93943
{berzins,cmartell,luqi,phadams}@nps.edu

Abstract. This paper evaluates the potential contributions of natural
language processing to requirements engineering. We present a selective
history of the relationship between requirements engineering (RE) and
natural-language processing (NLP), and briefly summarize relevant re-
cent trends in NLP. The paper outlines basic issues in RE and how they
relate to interactions between a NLP front end and system-development
processes. We suggest some improvements to NLP that may be possible
in the context of RE and conclude with an assessment of what should be
done to improve likelihood of practical impact in this direction.

Keywords: Requirements, Natural Language, Ambiguity, Gaps, Domain-
Specific Methods.

1 Introduction

A major challenge in requirements engineering is dealing with changes, especially
in the context of systems of systems with correspondingly complex stakeholder
communities and critical systems with stringent dependability requirements.
Documentation driven development (DDD) is a recently developed approach
for addressing these issues that seeks to simultaneously improve agility and de-
pendability via computer assistance centered on a variety of documents [1,2].
The approach is based on a new view of documents as computationally active
knowledge bases that support computer aid for many software engineering tasks
from requirements engineering to system evolution, which is quite different from
the traditional view of documents as passive pieces of paper. Value added comes
from automatically materializing views of the documents suitable for supporting
different stakeholders and different automated processes, as well as transforma-
tions that connect different levels of abstraction and representation. The sheer
size and complexity of enterprise-wide systems makes such automation support a
necessary condition for reliability rather than a convenience. The body of docu-
ments that embody the requirements of such systems is encyclopedic in size and
scope, and consequently impossible for a single person to understand in detail.
Assuring absence of contradictions or other non-local quality properties on such
scales is practically impossible for unaided humans.

� This work was supported in part by ARO under project P-45614-CI.

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 125–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 V. Berzins et al.

At the level of requirements engineering, a central problem is related to bridg-
ing the gap between stakeholders, who communicate in natural language, and
software tools, which depend on a variety of formal representations. A promi-
nent problem is resolving ambiguity, which is typical of natural language and to
a somewhat lesser degree the popular informal design notations such as UML.
If ambiguities in stakeholder needs statements are transferred into system spec-
ifications without being accurately resolved, they are likely to produce system
faults. This is because the world view and tacit assumptions and priorities of
system developers usually differ from those of prospective system clients. Others
include finding implied but unstated requirements, detecting conflicts between
needs of different stakeholders, and resolving such conflicts. Communication gets
increasingly difficult as systems scale up. Stakeholders are typically comprised
of diverse groups, each of which has its own specialized domain knowledge, jar-
gon, and unique tacit understanding of the problem. Bridging the gaps becomes
key to success as complexity increases because each group typically has only
a partial understanding of the issues, constraints, possible solutions, and cost
implications. [3,4] For large systems the gaps between communities can be so
extreme that different stakeholders experience different realities. For example,
during analysis of an avionics software fault that would cause an airplane to
turn upside down when it crosses the equator, it was suggested that this was a
severe problem that should be fixed right away. A fighter pilot disagreed, saying
that the pilot could just turn the plane right side up again and go on. A later
reaction from a helicopter pilot was that if it happened to him, he would die as
a result.

Progress on increasing flexibility without damaging reliability depends on
computer aid within an end-to-end process that includes requirements engineer-
ing. This leads to a need for natural language processing that can help bridge the
gap between natural stakeholder communication and unambiguous requirements
models such as those embodied in the DDD view of documents. Ever present
changes in requirements imply that this gap must be bridged repeatedly. This
in turn implies that incremental methods that can take advantage of knowledge
gained in previous iterations would be helpful.

In the 1970s the automatic programming group at MIT headed by Prof. Bill
Martin sought to create an end-to-end system that went from user requirement
documents to running code for business information systems. The project made
progress at the top and bottom levels of this process, but the two ends were
never integrated together.

The capabilities of natural language processing (NLP) software and our un-
derstanding of requirements engineering (RE) have improved substantially over
the past 30 years. This paper re-examines how the current state of NLP can
contribute to requirements engineering, how close is it to making a practical
impact in this context, and what needs to be improved to enable widespread
adoption. We examine the connection between a hypothetical NLP front end
and requirements engineering processes that would follow, and identify some of
the differences between generic NLP and domain-specific NLP embedded in a
requirements engineering process.

Innovations in Natural Language Document Processing 127

1.1 Challenges of NLP for Requirements Engineering

Requirements engineering is a critical part of the system development process be-
cause requirement errors cost roughly 100 times less to correct during requirement
engineering than after system delivery [5]. This imposes extreme constraints on
the accuracy of NLP that we might use to derive system requirements. However,
NLP accuracies are currently in 90%-92% range, at best (see section 2). Therefore
NLP must be augmented with other methods for removing residual errors, and
accuracy must be greatly improved if it is to be seriously used for RE.

1.2 Why All Is Not Yet Lost

NLP in the context of RE should be more tractable than generic NLP, because it
has the usual advantages of a domain-specific approach: scope is narrower, more
is known about the context, and specialized methods may apply. In particular,
much more is known about the intentions of the speaker and the context, such
as typical goals and surrounding tasks.

1.3 Overview

Section 2 presents a selective history of the relationship between RE and NLP.
Section 3 briefly summarizes recent trends in NLP. Section 4 outlines basic is-
sues in requirements engineering and how they relate to interactions between a
hypothetical NLP front end and system development processes and tools that
follow. Both aspects have been simplified to help bridge the gap between the two
communities; our apologies in advance to experts in both domains for leaving
out some of the subtleties of each area. Section 5 outlines some improvements
to NLP that may be possible in the context of RE. Section 6 concludes with an
assessment of what should be done to improve likelihood of practical impact in
this direction.

2 A Selective History of the Relationship between RE
and NLP

The desire to use natural language in software engineering has existed nearly
as long as the discipline itself. Indeed the invention of the compiler was an
attempt to express machine code in a higher-level language, one more closely
resembling human communication. Since the introduction of the FORTRAN
compiler in 1954, computer scientists and programmers have sought ways to
interact more naturally with the computer and eliminate the burden of trans-
lating required tasks into machine code that could be directly executed. This
section is an overview of natural language processing (NLP) influence in the
software development process, with an emphasis on requirements engineering.
It is not intended to be an exhaustive overview; however, it is an attempt to
illustrate representative works over the last four decades that have utilized NLP
techniques.

128 V. Berzins et al.

After the development of high level programming languages such as FOR-
TRAN and COBOL, “automatic programming” was one of the first attempts to
bring natural language into the software engineering process. Ruth wrote that
“automatic programming systems are simply the next logical step in the pro-
gression that has taken us from writing in machine language to using assemblers
to using compilers.”

As summarized by Balzer after 15 years of related work, components of auto-
matic programming included: 1) a means of acquiring a high-level specification
(requirements), 2) a mechanism for requirements validation, 3) a means of trans-
lating the high-level specification into a low-level specification, and 4) an auto-
matic compiler for compilation of the low-level specification [6]. Automating the
software development process was traditionally viewed as a compilation problem,
since that was where the majority of development effort had been concentrated,
but Balzer realized that it was a specification problem as well.

Those who sought true end-to-end automated software development eventu-
ally realized that the challenges were more difficult, and the goal more elusive,
than originally anticipated. This was primarily due to four factors:

1. Insufficient computing power
2. Immaturity of the field of NLP
3. Insufficient understanding of the substance and difficulty of requirements

engineering
4. Increasing complexity of software and software development forced new tech-

niques in software engineering at different levels of abstraction

As a means of tackling the specifications element of the automatic programming
problem, Balzer et al. developed the Gist specification language. Gist was one of
the first attempts to render higher-level specifications in a pseudo-natural lan-
guage. The idea behind the concept was that requirements could be captured
in a human-readable form, which could then be automatically translated into
lower-level specifications. These would, in turn, be automatically compiled into
executable code. In addition to facilitating the requirements and verification
process, the aim was also to correct what Balzer saw as a flawed step in the
software development life cycle: maintenance. Prior to this work, maintenance
had primarily involved directly editing the implementation when changing needs
dictated, rather than updating the specification, then the implementation. This
shortcut was typically motivated by cost and schedule pressures, and gained
short term benefit at the expense of increased long term maintenance costs due
to the loss of specification information. Gist sought to address this by necessi-
tating only that the specification be changed; the system would then be able to
automatically generate the new implementation based on the updated specifica-
tion. While Gist showed some success, and was used as a specification language
for USC software engineering courses, it still fell short of achieving the ultimate
goal of an end-to-end solution for specification to implementation. Some of its
shortcomings were that, despite its high level, it was still found to be unreadable

Innovations in Natural Language Document Processing 129

(a paraphraser was subsequently developed that partially alleviated this) and it
was not possible to automatically translate Gist into a compilable form. [6]

In 1974, Heidorn described a system that used English as a very high-level lan-
guage (VHLL) in simulation programming. The underlying program was written
in FORTRAN and was implemented under CP/CMS on the IBM 360/67. Pro-
gramming the simulation took the form of describing the problem statement in
natural language English phrases in a dialogue session with the computer. The
computer had the ability to query the user when additional information or clarifi-
cation was needed, and likewise, the user could ask questions of the computer if a
particular response was unclear. After the problem statement was entered to the
system’s satisfaction, it would notify the user and an English-language descrip-
tion of the problem could be produced for verification purposes. The language
processing facility was based on sets of decoding rules that were input into the
system and were interpreted “in the fashion of a bottom-up, parallel-processing
syntax-directed compiler.” The system used approximately 300 rules, which in-
cluded rules for tasks such as stemming and verb-phrase transformations. Using
Balzer’s four-phase automatic programming paradigm, we can describe Heid-
horn as having envisioned that the problem acquisition phase was the one for
which this system had the most to offer. [7]

By 1978, researchers had come to realize the magnitude of the NLP problem.
Martin remarked, “Making computers comprehend natural language has turned
out to be a very difficult task, not clearly distinguishable from the general prob-
lem of creating artificial intelligence.” His insight, however, was that a useful
database query system could be developed by solving a part of the NLP prob-
lem. Some of the concepts he introduced included a loosening of formal syntactic
rules, whereby a system could parse a query if it was understandable according
to part-of-speech even if it may violate a syntax rule (e.g., “He picked up her.”
versus “He picked her up.”) and an assumption that users would ask questions
to which they wanted informative answers (e.g., “Do you know the departure
time of flight 32?” would elicit an actual time, not just a “yes”). Martin’s EQS
system competed with several other database query languages of the time, in-
cluding LADDER, ROBOT, and PLANES, but unlike those systems, EQS used
natural language parsing, and was able to both capture and produce more in-
formation. Its advantages were that it could acquire additional domain-specific
syntactic details from the user without requiring explicit knowledge of English
syntax, it could accept multiple phrasings of a query, it could be extended with
new words and phrases, it could be programmed to assist the user in adding new
semantic knowledge, and pronoun reference resolution was easier. On the neg-
ative side, EQS was computationally intensive and would “waste time splitting
hairs in cases that don’t matter as well as in those that do.” [8]

Desire for natural language programming gave birth to higher and higher-level
languages. The Business Definition Language (BDL), introduced in 1977, was
another early example of what was to be known as a very high-level language
(VHLL). It was developed specifically to reduce the amount of manual labor
involved in specifying business problems and using these specifications to develop

130 V. Berzins et al.

applications. Since the operations of most businesses (particularly at the time)
revolved around paper-based forms, BDL had three component sublanguages:
one to define the business forms, one to describe the organization, and one for
defining calculations. [9]

Many researchers began to explore pseudo-natural language specification lan-
guages. In 1995, Lu et al. proposed BIDL (Business Information Description
Language) as a component of their PROMIS knowledge-based tool for auto-
matically prototyping management information systems. BIDL draws on three
primary knowledge bases for requirements analysis: a domain dictionary, a do-
main generic model, and software rules. These operate in conjunction with an
interactive requirement analyzer to produce a system specification for design and
implementation. Although BIDL is English-like, the system requires an analyst
to work with end-users to mark up the requirements into a BIDL document. [10]

Many VHLLs were pseudo-natural languages, which meant that they resem-
bled specific natural languages, but had an unambiguous syntax and semantics,
just like typical programming languages. This enabled reliable automated pro-
cessing and translation. They appeared as stylized natural-language text that
could be read and understood with some effort by untrained people. However,
successfully writing well-formed descriptions in VHLLs was still difficult and
required skills similar to programming.

By the early 1990s, requirements engineering had become a full-fledged dis-
cipline in its own right and researchers sought to apply natural language tools
and techniques to the requirements process in combination with other emerging
ideas. Rolland and Proix defined requirements engineering as the part of the
“development cycle that involves investigating the problems and requirements
of the user community and developing a conceptual specification of the future
system.” They proposed that a linguistic approach be used to develop a CASE
tool for requirements engineering support. Using this tool, unambiguous spec-
ifications would be derived from natural language descriptions of the problem
space, and for validation, natural language text would be generated from the
specification. [11]

In 1993, considering the difficulties inherent in a pure natural language ap-
proach to requirements engineering, Kaindl proposed RETH (Requirements En-
gineering Through Hypertext), a hypertext-based approach to bridge natural
language with a formal representation. [12] The Internet, and hypertextual in-
formation, was increasing in popularity, therefore it seemed a natural progression
to apply this technology toward the requirements process, which Kaindl recog-
nized as “one of the most important and least supported parts of the software
life cycle.” For example, terms from a domain-specific jargon can be hyperlinked
to their definitions to warn non-specialist readers of special meanings and pro-
vide and easy way to look up definitions of unfamiliar terms. Kaindl’s approach
incorporated elements of methodologies and fields such as object-orientation and
artificial intelligence. In particular, it treated requirements as objects which could
be classified and further refinements derived via inheritance. The stated goal of

Innovations in Natural Language Document Processing 131

Kaindl’s work was not to supplant other formal representation techniques, rather
to complement them.

In 1993, Ryan criticized previous NLP approaches to RE as being fraught with
“many unrealistic suppositions and presumptions.” His main argument was that
the desire to produce systems requirements as a result of “natural, or ‘near
natural’ conversation” did not make the process easier, nor did it result in more
accurate requirements, both of which were objectives in using NLP. In [13] he
detailed his argument and offered as an alternative some areas and tasks in the
requirements engineering process where he believed NLP could be realistically
and usefully applied. His supporting claim was that the requirements process
was not merely one of inter-language translation; it was also incumbent upon
the requirements analyst to understand the unstated assumptions of those with
domain knowledge and be able to model this “common sense” knowledge – an
AI problem well beyond the ability of any known machine to solve.

Assuming that the information to be analyzed for requirements was already in
some textual form (and not diagrams or other non-textual form), Ryan suggested
that automated techniques to scan, search, browse, and tag large bodies of text
could be of some use. His view was that the system would have some value as a
purely clerical machine, without having to achieve any level of understanding of
the text. Another area in which Ryan believed NLP could play a useful role was in
that of a “refinement guard.” The idea behind this was that, in the requirements
process, some user requirements may be difficult to quantify and to translate into
a specification language, therefore they may be at risk and likely to be “refined
out.” He proposed a “requirements tracing facility” to tag requirements early on
in the process and allow them to be represented in some form (e.g., comments or
links) in the formal specification system. Finally, he describes two approaches to
requirements verification where NLP could play a role. In the first approach, the
system would generate test scripts containing extreme and average cases based
on the formal specification for the client’s approval. In the second approach, the
system would use an iterative critiquing strategy based, perhaps, on a question-
answer method to compare test schemas to the developing specification.

Ryan’s critique ended by stating his belief that the requirements process was
an organic, social construct, and NLP and other techniques would be of better
service in a supporting role, rather than one of replacement.

Nanduri and Rugaber, in 1995, proposed a requirements validation approach
using NLP to support an Object Oriented Analysis (OOA) method [14]. Their
study involved using a natural language parser to extract candidate objects
and associations from a requirements document and construct an object model
diagram. The results were tested against the results of a manual OOA process.

Sleator and Temperley’s publicly available link grammar parser [15] was used
as natural language parser in the Nanduri and Rugaber study. Guidelines were
created for creating an object model from the specifications text and were used
as rules in text post-processor. Since the parser dealt with each sentence inde-
pendently, Nanduri and Rugaber modified their tool to accumulate knowledge
between the parsed sentences. This entailed using empirical rules for tasks such

132 V. Berzins et al.

as anaphora resolution, which is the task of deciding to what a pronoun, for
example, refers1.

The tool was tested with example high-level specifications for four different
applications: a helicopter landing, an automatic teller machine (ATM), an ele-
vator, and an employment database. The results obtained by the process were
comparable to the models constructed by hand. In the instances where the tool
failed, Nanduri and Ragaber identified the following as causes: parser inadequacy,
ambiguous or incomplete specifications in the original requirements documents,
lack of domain knowledge, and inadequacy of guidelines. The conclusion reached
by the study was that a fully-automated process of model generation using NLP
was still not achievable, but that there was value in pursuing further research in
an attempt to overcome some of the limitations encountered.

Attempts to turn NL into software requirements were by no means limited
to the English language. In 1995, Ohnishi proposed CARD (Computer Aided
Requirements Definition), which was a software requirements environment that
accepted both Japanese-based textual language and visual language as input
and delivered a software requirements specification (SRS) as output. CARD
was designed in response to a desire to tackle five elements of the software
development process: 1) requirements analysis, 2) requirements description, 3)
SRS verification, 4) SRS execution, and 5) preliminary software design. The
design goal of CARD was to achieve a quality SRS as measured by correctness,
testability, traceability, feasibility, and usability. [16]

In the mid-to-late 1990s, full-fledged requirements engineering environments
and tool suites began to emerge. One of the most promising NL-focused,
requirements-engineering applications was the Circe environment introduced by
Ambriola and Gervasi in 1997. [17] Circe was described as “a Web-based en-
vironment for aiding in natural language requirements gathering, elicitation,
selection, and validation.” It employed a NL recognition engine that takes as
input a set of requirements, glossaries (predefined and system specific), and a
set of model-action-substitution (MAS) rules that employ fuzzy matching. The
output of Cico, the natural language recognition engine of Circe, is a set of
abstract requirements, which can be viewed in different user-selectable forms
(DFD, E-R, etc.). Notable features of Circe include flexibility, customizability,
and extensibility. More work is being done to extend Circe to new domains (e.g.,
temporal). While Circe is able to detect limited classes of conflicts in modeled
data, it does not tackle the task of conflict resolution.

Policy analysis and the derivation of requirements from organizational policy
has become a focus area, particularly over the last decade. For large organiza-
tions with massive policy bases, this is a complex problem, and the mapping
from policy to requirements, or even between policies, can be difficult. Tools
that can analyze the language of policies, derive requirements, and check for con-
sistencies, overlap and redundancy, gaps, or inaccuracies are especially sought
after. Michael et al. have described the architecture of a natural language input-
processing tool (NLIPT) as part of a policy workbench. This tool maps natural

1 See Section 3, below.

Innovations in Natural Language Document Processing 133

language policy statements to a computationally equivalent form that can be
used in a workbench to reason about, maintain, and further develop policy. The
tool consists of an extractor, an index-term generator, a structural modeler, and
a logic modeler. The prototype tool achieved a 96% accuracy in parsing 99 Naval
Postgraduate School security policy statements. [18] This supports our hypothe-
sis that domain-specific natural-language processing tools can potentially attain
higher accuracy.

Denger et al. discussed the use of natural language patterns in eliminating
imprecision and ambiguity in high-level requirements [19]. Focusing on require-
ments for embedded systems – those in which high precision is often required to
prevent catastrophic failure – the research involved examining language patterns
in documentation for elements such as events, conditions, systems reactions, etc.
Sentence patterns are then generated and combined into scenarios for complete
specifications. This modular approach stresses flexibility so that more precise re-
quirements may be formed by giving the author more expressive freedom during
the process. Authoring rules were also developed, which were used in conjunction
with the patterns. The authoring rules were designed to describe how natural
language could be used to reduce ambiguity. The results of applying this ap-
proach showed that the system was able to analyze requirements and rewrite
them to reduce ambiguity or include missing information, however, the rewrit-
ten requirements tended to be longer and grammatically more clumsy that those
written by hand. Additional manual effort was required to clean up the writing
to enhance readability.

The development of XML and other structured markup languages inspired
some researchers to consider them as an alternative to using natural language in
requirements engineering. In 2003, Durán et al. proposed XML/XSLT as a tool
in requirements verification. Their justification was that the “lighter” technol-
ogy provided sufficient flexibility and adequate results without the demand on
computer resources that NLP-based approaches imposed. [20]

In 2004, Lee and Bryant stated that natural language was a preferred ap-
proach for systems engineering because users must be involved throughout the
software development lifecycle to obtain good results. The challenges in using
NL in this context were twofold: 1) the natural ambiguity in NL, and 2) the
different levels of formalism between the NL domain and the formal specifica-
tion domain. The project entailed the development of a system that assisted
analysts in converting parts of a requirements document written in NL to a
formal specification language via linguistic and formal specification techniques.
These issues were addressed by using Contextual Natural Language Processing
(CNLP) to undertake the ambiguity problem and Two Level Grammar (TLG)
to deal with the differing levels of formalism. The research showed that, in some
cases, efficient executable code (in a high-level language such as Java or C++)
could be generated by using the output of the CLNP-TLG system as input to a
formal specification system, the Vienna Development Method–VDM++, which
provides analysis tools and code generation capabilities. This process required
manual transformation of the text and construction of a problem specific model.

134 V. Berzins et al.

It is still to be seen if this technique will scale up to larger, practical problems.
No evaluation of the accuracy of this approach has been provided in [21].

There is still much work to do in natural-language-based requirements engi-
neering research. Focus areas include NLP support in requirements elicitation
(NL-based question/answer tools), requirements modeling (developing heuristics
for formalizing natural language policies and inferring abstractions and prelim-
inary models from natural-language requirements texts), and validation/verifi-
cation (comparison of final specification to requirements) [22]. It is clear from
examining previous and ongoing work, and considering current NLP capabil-
ities, that the largest gain of productivity in requirements engineering would
be realized through the development of supporting toolsets that can partially
automate or support a manual process. The focus should be less on developing
NLP systems that can understand every nuance of natural language and inde-
pendently create perfect, implementable specification documents, and more on
special purpose tools that can assist professionals in managing large requirement
sets in specialized domains through the use of parsing, vocabulary matching,
tagging, etc.

Since requirements develop in an iterative process of validation, diagnosis and
improvement, tools that can reduce the need for repeating unchanged parts of
manual processes would be valuable for RE.

3 Summary of Recent Trends in Natural Language
Processing

Natural Language Processing (NLP) is a cross-cutting discipline that includes
computer science, linguistics, artificial intelligence and cognitive science, as well
as statistics and information theory. The objective of NLP is automated under-
standing and generation of written natural languages (NL). Challenges of NLP
include: the complexity and ambiguity of language constructs; the fact that
understanding a natural language often requires representation of one’s knowl-
edge about the outside world (tacit knowledge); and the fact that non-linguistic
context might also need to be considered, since it often helps to improve the
interpretation of speaker intentions. Table 1 provides some concrete examples of
the problems just mentioned.

On the one hand, research in NLP still struggles with conceptual difficulties
such as context modeling or formalization of speaker intentions [24]. On the other
hand, the initial period of excessive optimism in the field was followed by mature
statistical analysis and creation of extensive linguistic resources that have helped
foster excellent progress in many NLP domains, e.g., part-of-speech-tagging and
parsing.

One of the important methodological developments in NLP research was iden-
tifying different levels of representation and processing, each with their own set
of relevant entities, statistical relations, problems and solutions. NLP distin-
guishes at least four processing levels: lexical, syntactic, semantic, and pragmatic.
Each level has its own patterns of ambiguity (see Table 1) and corresponding

Innovations in Natural Language Document Processing 135

Table 1. Challenges of NLP

Problem Examples

1. Ambiguity of word meaning and scope The word plot can refer to either a secret scheme or a
graphical representation of data. (See blog posting 8 in
the workshop case study [23])

Natural languages usually don’t specify which word a
phrase or an adjective modifies. For example, in the
sentence Someone hijacks a plane with a box cutter,
does with a box cutter refer to Someone or to a plane?
(See blog posting 7 in the workshop case study [23]).

2. Computational Complexity For determination of grammaticality, it is possible that
an exponential number of parse trees might need to be
checked.

3. Tacit knowledge and anaphora resolution The sentences We gave the passengers the seats because
they were waiting and We gave the passengers the seats
because they were empty have the same surface
grammatical structure. However, in the former the word
they refers to the passengers, in the latter it refers to
the seats: the reference cannot be resolved properly
without knowledge of the properties and behavior of
passengers and seats.

4. Non-linguistic Context Includes stakeholder’s role, attitude, exaggeration to
make a point, domain knowledge, facial expression,
gestures, disfluencies, time of the year/day, recent
events, etc.

processing methods. As a rule of thumb, the higher the level, the longer the con-
textual dependencies that have to be taken into account. Importantly, processing
at each level is not generally independent. For example, knowing semantics of a
sentence may help to disambiguate the part of speech for a particular word.

NLP can be viewed as a sequence of processing steps that starts from a raw
text and proceeds through each higher level of representation. Under this ap-
proach the output of a lower level is the input for a higher level. Though there
are some interdependencies, for simplicity each level is most often considered
independently. This assumption greatly facilitates the identification of specific
features at each level. It is also important to note that while processing on lexical
and syntactical levels is relatively well defined, the higher levels of NLP are not
standardized in terms of their objectives or output formats. This is due to the
overall complexity of the processing on higher levels and in the extra-linguistic
features involved. For example, in order to define pragmatic content for a text
one needs to know the intentions of the reader or writer, which typically are not
the part of a text.

Since many NLP techniques rely on statistical dependencies in the text, the
construction of large-scale, comprehensive data sets, or corpora, has become an
important thrust in NLP research. These corpora are composed of a set of texts
with words tagged with various labels (e.g. part of speech (POS), semantic,
syntactic and role-based ones). Table 2 gives some examples. These corpora
provide a rich source for probabilistic modeling of languages. However, each
corpus is limited to a specific domain of a particular language (e.g. English

136 V. Berzins et al.

Table 2. Levels of NLP

Level Problems Methods/KB

Lexical Part of speech (POS) tag-
ging

Part of speech tagger
Corpora: WSJ, Brown Corpus

Syntactic Generation of parse-trees
representing syntactic struc-
ture of sentence

Probabilistic parsers
Corpora: WSJ, Brown Corpus

Semantic Context modeling; Word-
Sense Disambiguation

Semantic parsers, WSD Classifiers;
Corpora: FrameNet, Senseval

Pragmatic Goal, content or topic of a
text or discourse; Anaphora
Resolution

Discourse Analyzers;
Corpora: Penn Discourse Treebank

novels and news). The problem of adjusting either corpora or tools to another
domain is yet to be solved, although progress is being made [25,26,27,28,29].
Below we briefly explain each step of our simplified NLP model and provide a
description of corpora that are used to derive statistical dependencies.

The first step in processing texts is finding word boundaries, called tokeniza-
tion, and assigning each word a part of speech (e.g. noun, verb, adjective or
adverb; quite surprisingly, there are around 40 different POS categories in the
most common scheme). This process is called “part of speech tagging” (POS-
tagging) and it provides important information for all following stages [30,31].
Usually, POS-tagging is carried out iteratively using short contextual dependen-
cies that specify how a POS of a given word depends on the POS of the previous
word. These dependencies are described by a set of conditional probabilities of
the form P (POS1|POS2) where POS1 is part of speech we are interested in
and POS2 is the part of speech of the previous word. Contemporary methods
of POS-tagging achieve tagging precision above around 97%.

The second step of NLP analyzes larger chunks of a sentence than individ-
ual words. In particular, it identifies Noun Phrases (NP), Verb Phrases (VP),
Prepositional Phrases (PP), etc. The corresponding method, called syntactic
parsing, outputs syntactic trees that provide both labels and the hierarchical
structure of a sentence. Most modern parsers are at least partly statistical; that
is, they rely on a corpus of training data which has already been annotated
(parsed by hand). In short, they use POS information from a previous level but
within a larger context to figure out the conditional probabilities of syntactic
constituents. Parsing methods condition probabilities not just on POSs but also
on the words themselves. State of the art precision in parsing is currently around
92% [28,32,33]. One of the challenges of syntactic parsing is that each sentence
can have multiple valid parse trees. Note that parsing difficulties can come from
propagation of inaccuracies from a previous stage of processing (Figure 1).

Innovations in Natural Language Document Processing 137

(a)

(b)

Fig. 1. Two alternative parsing trees of the same sentence. In this example, the ambi-
guity in parsing comes from the wrong assignments of different POS-tags in a previous
stage of processing. Even with the correct POS assignment, syntactic trees can vary
depending on the attachment of prepositional phrases and other factors.

The next step in our simplified NLP model is semantic processing. Issues here
concern how to represent the meaning of a sentence, how to make linguistic
inferences, as well as word-sense disambiguation (WSD). WSD is the problem of
determining in which sense a word is used in a given context [34]. For example,
consider the word bass that has two distinct senses: a type of fish and a tone of
low frequency. In the two following sentences it is clear to a human which senses
are used:

1. The bass part of the song is very moving.
2. I went fishing for some sea bass.

However, for machines WSD is a difficult task. Compared to POS tagging, which
requires a fairly short context, WSD might involve much longer dependencies.
Successful contemporary implementations of WSD use Kernel methods such as
SVM trained on the SemCor knowledge base (which contains 352 texts). Most
of the texts are annotated with POS, lemma, and WordNet synset. The perfor-
mance is usually much worse than in POS tagging with precision around 75% for
English [35,34]. Such low performance may suggest that contemporary linguistic
representations developed for statistical classifiers are not adequate enough to
model word senses.

One of the solutions is to use better structured input representations that in-
corporate relations between words such as the ones included in the WordNet [36].

138 V. Berzins et al.

This knowledge base, developed at Princeton University, addresses not only POS
and synsets but also such relationships as synonymy/antonymy, meronymy/
holonymy (part/whole), hypernymy/hyponym (super and subclasses). While
WordNet describes possible word meanings by corresponding synsets, example
sentences, and a rich set of relations there is still a need to automatically identify
meaning in a given context. There have been several attempts to systematically
analyze meaning of words, for example, using argument structure. Levin [37]
proposed that verbs’ semantic classes correlate with their syntactic and mor-
phological structure. This allowed her to classify verbs in groups such as Put
Verbs (mount, place, put) or Correspond Verbs (agree, argue, clash, collaborate,
communicate, etc.).

However, more detailed examination of Levin’s classes revealed that better
classification should be at least partially semantically motivated. This started
the FrameNet project at Berkeley University. In FrameNet, not only verbs but
also other POSs are assigned role frames. The FrameNet lexical database cur-
rently contains more than 10,000 lexical units (e.g. “traffic light”, “take care of”,
“by the way”), more than 6,100 of which are fully annotated, in more than 825
semantic frames, exemplified in more than 135,000 annotated sentences. The ba-
sic idea of FrameNet is that one cannot fully understand the meaning of a single
word without access to all the essential knowledge that relates to that word. For
example, one would not be able to understand the word “sell” without knowing
anything about the situation of commercial transfer, which also involves, among
other things, a seller, a buyer, goods, money, the relation between the money
and the goods, and the money and so on. Thus, a word activates, or evokes,
a frame of semantic knowledge relating to the specific concept it refers to, or
highlights, in frame semantic terminology.

Finally, we turn briefly to pragmatics, which is concerned with understand-
ing the relationships between language and context. For example, an important
aspect of this level of analysis is anaphora resolution. Simply put, anaphora res-
olution is concerned with the problem of resolving what a pronoun or a noun
phrase refers to. For example, consider the following two cases:

1. John helped Mary. He was kind.
2. There were dresses of several different colors and styles. They were all pretty

and labeled with price tags. Sally chose a blue one. Mary chose a skimpy
one.

In case 1, “He” clearly refers to John. But to what does “one” refer in case 2?
Humans have no problem understanding that the mentions of “one” in the third
and forth sentences refer to “they” in the second sentence, which, in turn, refers
to “dresses” in the first sentence. However, for a machine, the mentions of “one”
could also have referred to “price tags” in the second sentence. For more complex
computer communication, like blogs or on-line chat, anaphora resolution is even
harder. Other forms of discourse analysis include understanding the discourse
structure—i.e., what role does a sentence play in the discourse—and speaker
turn-taking.

Innovations in Natural Language Document Processing 139

4 NLP in the Context of RE

NLP in the context of RE differs from general purpose NLP because the inputs
and outputs are different, as illustrated in Figures 2 and 3. The result of the
NLP front end should be a model of the requirements. Although there are a va-
riety of notations and formalisms for requirements, we believe that the structure
summarized in this section provides a useful reference model that is close to the
mark. For a detailed description and examples see [38]. The requirements are
most usefully conceptualized as a database containing structured information,
or an instance of an object model of the requirements rather than as a text
document. Abstractly, the requirements database consists of:

1. Problem ontology, which is called an environment model in [38]. This pro-
vides an unambiguous vocabulary for defining the requirements: each symbol
denotes a unique concept with a well-defined meaning. Although any distinct
symbols will do for mathematical analysis or processing by software, com-
pound symbols composed of multiple words are often used to enhance human
understanding. For example, the two word senses in the example in section
3 could be denoted by the symbols bass fish and bass tone. In our specific
framework, a concept can be a type, relationship, attribute, or constant
(distinguished instance of a type). Related concepts are generally grouped
into modules, often related to types, and are subject to specialization and
multiple inheritance that combines constraints by conjunction. Meaning of
concepts is described by associated natural language texts, logical formulae,
real-world measurement processes, or links to other defining documents. In
particular, concepts can be uniquely mapped into symbols of a typed logic
or other formalism to support further analysis, transformation, and simpli-
fication. Concepts correspond roughly to the semantic frames mentioned in
the previous section, although in this context they are domain-specific and
sometimes application specific. New specializations of previously known con-
cepts are often acquired as part of RE. There appears to be a relatively small
set of core concepts related to typical RE processes and common properties
of problem domains for which software solutions are desired. Approximately
140 such concepts are identified in [38]. This number is small enough to sug-
gest that special case methods for recognizing them may be affordable.

2. Requirements hierarchy. Each node in the hierarchy represents a require-
ment, which is a constraint that the proposed system will have to satisfy.
Nodes can have many views, such as natural language descriptions, diagrams,
mathematical formulae, etc. Higher level nodes are more abstract and may
leave many details unspecified. Lower level nodes refine the meaning of their
parent node by specifying additional details related to the parent require-
ment. Thus the hierarchy is a representation that supports and documents
the process of resolving ambiguities and imprecise statements. The represen-
tation supports a process of iterative refinement that gradually sharpens the
intended meaning of a stakeholders’ statements and reduces ambiguity. This

140 V. Berzins et al.

sharpening of meaning goes beyond NLP processes that seek to determine
which of several possible interpretations is the correct one for a given piece
of text. It also involves requirements validation processes, such as prototyp-
ing, which help stakeholders understand the implications of their choices.
This will help them finalize and sometimes reformulate their decisions. This
process is currently carried out by human experts. In a completed hierarchy,
leaf nodes are defined in terms of the vocabulary of the problem ontology,
and are unambiguous in the sense that they do not contain references to
undefined concepts. If the requirements are to be used as the basis for au-
tomated testing of the system under development, then the concepts used
in the requirements must all be measurable or computable from measurable
concepts. Achieving this level of clarity with high confidence of validity is the
Holy Grail of RE. Conversely, a typical recurrent nightmare is the possibility
of a catastrophic system failure due to failure to discover a critical unstated
requirement.

3. System model. Later stages of requirements engineering generally produce
a model of the proposed system at some level of detail. At a minimum,
interfaces and externally visible behavior of the proposed system must be
modeled, along with its interactions with its context: the (human) stake-
holders of the proposed system and external systems it communicates with.
There are a variety of notations for this type of model, including use cases,
UML, many formal modeling languages, as well as architecture description
languages.

We conjecture that the structures identified above and the associated pro-
cesses can be exploited to improve all aspects of RE, including NLP applied to
statements from stakeholders. For example, [38] identifies heuristics for eliciting
missing needed information related to requirements. These heuristics can be rep-
resented as questions to the stakeholders that are linked to reusable concepts in
the common core of the problem ontology. When statements from stakeholders
are linked to such concepts, the associated questions are triggered. This structure
can aid the associated NLP systems in the following ways:

1. Prior knowledge of the question that was asked can help NLP processes to
correctly interpret the response by conditioning the probabilities of the the
various possible interpretations;

2. Previously triggered problem-domain concepts can be linked to various
domains in the ontologies by NLP processes, thereby conditioning the prob-
abilities of other terms/senses associated with the domain. This kind of in-
formation should help with word-sense disambiguation as well as parsing.

The Worldwide Web Consortium’s (W3C) efforts to enable the Semantic Web
have resulted in developments such as OWL (Web Ontology Language)2 and

2 http://www.w3.org/2004/OWL/

Innovations in Natural Language Document Processing 141

RDF (Resource Description Framework)3. These tools hold potential in struc-
turing the requirements hierarchy and providing a bridge between that and the
system model. In particular, software object frameworks expressed using these
may expose a richer semantic representation that could enable automated “rea-
soning” about model composition and support the preceding NLP processes for
eliciting information from the stakeholder as well as the transformation of stake-
holder information into a formal representation.

The requirements should serve both as guidance for system developers and
as a reference standard on which system quality assurance is based. In highly
automated processes that current software engineering research is seeking to en-
able, the information in the requirements should be sufficiently complete and
precise to enable automatic generation of at least the software that can test a
system implementation to determine whether or not it meets the requirements
to within a given statistical confidence level. In some visions of model-based do-
main specific development, information in the requirements may also be used to
directly generate parts of the deliverable code. Such code generation processes
use models of domain-specific software structures, known as reference architec-
tures, and sets of rules for tailoring known solution methods to specific problem
characteristics extracted from the requirements. Both the reference architecture
and the generation rules are constructed for each problem domain by skilled
software designers.

In any case, the delivered system is unlikely to be any better than the re-
quirements, reinforcing the mantra that accuracy of the requirements has great
importance. Existing manual processes for deriving requirements from informal
stakeholder statements therefore incorporate a variety of checking procedures
that include reviews, storyboarding, simulation and prototype demonstration,
dependency tracing, consistency checking, and many others. NLP in the con-
text of RE must be integrated with such checking procedures to achieve needed
accuracy.

Other processes that must be supported after formalization of the stakeholder
input include detecting and resolving conflicts between needs of different stake-
holders, finding errors of omission, and finding cases where different stakeholders
may agree on the wording of a requirement but not on its meaning. This last
case is significant in large systems because they typically involve stakeholders
from a variety of different specializations and communities.

5 How NLP Can Be Improved in the Context of RE

Generic NLP, as illustrated in Figure 2, has only one set of inputs, the natural
language text and the accompanying general linguistic resources. In the context
of RE there should be additional information: identification of the source of the
text, including the author’s identity, role in the process, expertise areas, etc., as
shown in Figure 3. There are also other sources of relevant information, including
general-purpose information about requirements engineering processes, system
3 http://www.w3.org/RDF/

142 V. Berzins et al.

Natural
Language

Processing
Module

General Language
Resources

General
Ontology

General
Language
Model

Document Text

Representation of
Document Meaning

Attribute
Attribute

Class Name

Operation
Operation

Attribute
Attribute

Class Name

Fig. 2. Generic Natural Language Processing

Stakeholder Input

Natural
Language

Processing
Module

Requirements Database

Domain-specific
Language
Resources

General Language
Resources

Problem Model

Stakeholder
Attributes

Text of
Proposed

RequirementDomain-
specific

ontology

Domain-
specific

Language
Model

General
Ontology

General
Language

Model

Problem
Ontology

System
Model

Fig. 3. Natural Language Processing for Requirements Engineering

development processes, and typical problem domain concepts and jargon as well
as information about the kind of system to be developed in each particular
project. All of this information can be used to limit the search space for the
NLP, condition the probabilities of possible word senses, and provide models of

Innovations in Natural Language Document Processing 143

the context of the discourse that can provide the basis for judging likelihood of
interpretations for much larger bits of text than individual words or phrases. This
information can drive different post-processing that seeks to identify particular
types of errors or just to identify and question the generated interpretations
that have weak evidence. For example, the following ambiguous sentence from
the example blog can be resolved only when we know that the person speaking
is an airport security agent: And people can’t remain alert to rare events, so they
slip by. Viz, it is rare for someone to smuggle dangerous liquids in their carry-on
luggage; consequently, it is difficult for screening agents to continually be alert,
and the event goes unnoticed.

6 Conclusions

It appears that NLP is getting close to the point where it can contribute to
requirements engineering, but it cannot do so in a vacuum. The results must be
checked and reviewed, and existing methods must be improved by using more
aspects of the context of the process to improve accuracy.

Even approximate NLP could facilitate text analysis and reduce workload by
prioritizing documents, using context for effective search, making summaries, and
classifying texts or their fragments even if accuracy of the process is insufficient to
support requirements engineering based solely on the raw output of the NLP. The
difference from fully automated processing is that NLP methods will typically
give users several options and it will be their responsibility to select the right one.
Thus currently the most safe and effective use of NLP is to integrate its methods
with human processing as it is conceptualized in Human System Integration
(HSI) framework. The value added would be that, the automated processing
could identify some weaknesses that unaided humans might miss [39,40].

The issues that will determine whether or not NLP enters widespread use
in requirements engineering are economic: it must cost less and produce more
accurate results than corresponding manual processes that rely on human experts
to interpret and model the raw statements from the stakeholders. This is a
challenging goal that reaches beyond the traditional bounds of NLP to include
social, organizational and psychological issues.

References

1. Luqi, Zhang, L., Berzins, V., Qiao, Y., Qiao, Y.: Documentation driven devel-
opment for complex real-time systems. IEEE Transactions on Software Engineer-
ing 30(12), 936–952 (2004)

2. Luqi, Zhang, L.: Documentation driven development for complex systems. In: Pro-
ceedings of Workshop on Advances in Computer Science and Engineering, Berkeley,
CA, pp. 141–170 (2006)

3. Stone, A., Sawyer, P.: Identifying tacit knowledge-based requirements. Software,
IEE Proceedings 153(6), 211–218 (2006)

4. Kelly, D.F.: A software chasm: Software engineering and scientific computing. IEEE
Software 24(6), 119–120 (2007)

144 V. Berzins et al.

5. Boehm, B.W.: Software Engineering Economics. Prentice Hall PTR, Upper Saddle
River (1981)

6. Balzer, R.: A 15 year perspective on automatic programming. IEEE Transactions
on Software Engineering SE-11(11), 1257–1268 (1985)

7. Heidorn, G.E.: English as a very high level language for simulation programming.
In: Proceedings of the ACM SIGPLAN symposium on Very high level languages,
pp. 91–100. ACM Press, New York (1974)

8. Martin, W.A.: Some comments on eqs, a near term natural language data base
query system. In: ACM 1978: Proceedings of the 1978 annual conference, pp. 156–
164. ACM Press, New York (1978)

9. Hammer, M., Howe, W.G., Kruskal, V.J., Wladawsky, I.: A very high level pro-
gramming language for data processing applications. Commun. ACM 20(11), 832–
840 (1977)

10. Lu, R., Jin, Z., Wan, R.: Requirement specification in pseudo-natural language in
promis. In: Proceedings of the Nineteenth Annual InternationalComputer Software
and Applications Conference, COMPSAC 1995, pp. 96–101 (1995)

11. Rolland, C., Proix, C.: A Natural Language Approach For Requirements Engineer-
ing. In: Loucopoulos, P. (ed.) CAiSE 1992. LNCS, vol. 593, pp. 257–277. Springer,
Heidelberg (1992)

12. Kaindl, H.: The missing link in requirements engineering. SIGSOFT Softw. Eng.
Notes 18(2), 30–39 (1993)

13. Ryan, K.: The role of natural language in requirements engineering. In: Proceedings
of the IEEE International Symposium on Requirements Engineering (1993)

14. Nanduri, S., Rugaber, S.: Requirements validation via automated natural language
parsing. In: Proceedings of the Twenty-Eighth Hawaii International Conference on
System Sciences, vol. 3, pp. 362–368 (1995)

15. Sleator, D., Temperley, D.: Parsing English with a link grammar. In: Proceeedings,
Third International Workshop on Parsing Technologies, Tilburg, The Netherlands/
Durbuy, Belgium (1993)

16. Ohnishi, A.: CARD: An environment for software requirements definition. In: Pro-
ceedings of APSEC, Asia-Pacific Software Engineering Conference, pp. 420–429
(1995)

17. Ambriola, V., Gervasi, V.: Processing natural language requirements. In: 12th
IEEE International Conference on Automated Software Engineering, pp. 36–45
(1997)

18. Michael, J.B., Ong, V.L., Rowe, N.C.: Natural-language processing support for
developing policy-governed software systems. In: 39th International Conference and
Exhibition on Technology of Object-Oriented Languages and Systems, TOOLS 39,
pp. 263–274 (2001)

19. Denger, C., Berry, D.M., Kamsties, E.: Higher quality requirements specifications
through natural language patterns. In: Proceedings of IEEE International Confer-
ence on Software: Science, Technology and Engineering, SwSTE 2003, pp. 80–90
(2003)

20. Durán, A., Ruiz, A., Bernárdez, B., Toro, M.: Verifying software requirements with
xslt. SIGSOFT Softw. Eng. Notes 27(1), 39–44 (2002)

21. Lee, B.-S., Bryant, B.R.: Automation of software system development using natural
language processing and two-level grammar. In: Wirsing, M., Knapp, A., Balsamo,
S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 219–233. Springer, Heidelberg (2004)

22. Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In:
FOSE 2007: 2007 Future of Software Engineering, Washington, DC, USA, pp. 285–
303. IEEE Computer Society (2007)

Innovations in Natural Language Document Processing 145

23. Luqi, Kordon, F.: Advances in requirements engineering: Bridging the gap between
stakeholders’ needs and formal designs. In: Paech, B., Martell, C. (eds.) Monterey
Workshop 2007. LNCS, vol. 5320, pp. 15–24. Springer, Heidelberg (2008)

24. Iwanska, L., Zadrozny, W.: Introduction to the special issue on context in natural
language processing. Computational Intelligence 13(3), 301–308 (1997)

25. Hwa, R.: Supervised grammar induction using training data with limited con-
stituent information. In: Proceedings of the 37th annual meeting of the Associa-
tion for Computational Linguistics on Computational Linguistics, Morristown, NJ,
USA, pp. 73–79. Association for Computational Linguistics (1999)

26. Steedman, M., Hwa, R., Clark, S., Osborne, M., Sarkar, A., Hockenmaier, J.,
Ruhlen, P., Baker, S., Crim, J.: Example selection for bootstrapping statistical
parsers. In: NAACL 2003: Proceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics on Human Language
Technology, pp. 157–164. Association for Computational Linguistics, Morristown,
NJ, USA (2003)

27. Xi, C., Hwa, R.: A backoff model for bootstrapping resources for non-english lan-
guages. In: HLT 2005: Proceedings of the conference on Human Language Tech-
nology and Empirical Methods in Natural Language Processing, pp. 851–858. As-
sociation for Computational Linguistics, Morristown, NJ, USA (2005)

28. McClosky, D., Charniak, E., Johnson, M.: Effective self-training for parsing. In:
Proceedings of the main conference on Human Language Technology Conference
of the North American Chapter of the Association of Computational Linguistics,
pp. 152–159. Association for Computational Linguistics, Morristown, NJ, USA
(2006)

29. Steedman, M., Osborne, M., Sarkar, A., Clark, S., Hwa, R., Hockenmaier, J.,
Ruhlen, P., Baker, S., Crim, J.: Bootstrapping statistical parsers from small
datasets. In: Proceedings of EACL 2003, Budapest, Hungary, pp. 331–338 (2003)

30. Charniak, E.: Statistical techniques for natural language parsing. AI Maga-
zine 18(4), 33–44 (1997)

31. van Halteren, H., Zavrel, J., Daelemans, W.: Improving accuracy in wordclass
tagging through combination of machine learning systems. In: Proceedings of the
ANLP-NAACL, Seattle, Washington, Morgan Kaufman (2000)

32. Collins, M.: Three generative, lexicalized models for statistical parsing. In: Cohen,
P.R., Wahlster, W. (eds.) Proceedings of the Thirty-Fifth Annual Meeting of the
Association for Computational Linguistics and Eighth Conference of the European
Chapter of the Association for Computational Linguistics, Somerset, New Jersey,
pp. 16–23. Association for Computational Linguistics (1997)

33. Collins, M.: Discriminative reranking for natural language parsing. In: ICML 2000:
Proceedings of the Seventeenth International Conference on Machine Learning, pp.
175–182. Morgan Kaufmann Publishers Inc., San Francisco (2000)

34. Mihalcea, R.: Knowledge Based Methods for Word Sense Disambiguation. In: Word
Sense Disambiguation: Algorithms, Applications, and Trends. Kluwer, Dordrecht
(2006)

35. Mihalcea, R.: Unsupervised large-vocabulary word sense disambiguation with
graph-based algorithms for sequence data labeling. In: HLT 2005: Proceedings of
the conference on Human Language Technology and Empirical Methods in Natu-
ral Language Processing, pp. 411–418. Association for Computational Linguistics,
Morristown, NJ, USA (2005)

36. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to
WordNet: An on-line lexical database. International Journal of Lexicography 3(4),
235–244 (1990)

146 V. Berzins et al.

37. Levin, B.: English Verb Classes and Alternations: a preliminary investigation,
Chicago and London. University of Chicago Press, Chicago (1993)

38. Berzins, V., Luqi: Software engineering with abstractions. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (1991)

39. Plummer, S.: Memorandum: Awareness of human-systems integration (HSI) in Air
Force acquisitions (2000)

40. Blasch, E.: Assembling a distributed fused information-based human-computer cog-
nitive decision making tool. Aerospace and Electronic Systems Magazine 15(5),
11–17 (2000)

41. Helbig, H.: Knowledge Representation and the Semantics of Natural Language.
Springer, Berlin (2006)

42. Hartstrumpf, S.: Coreference resolution with syntactico-semantic rules and corpus
statistics. In: Proceedings of the Fifth Computational Natural Language Learning
Workshop (CoNLL-2001), Toulouse, France, pp. 137–144 (2001)

43. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall PTR, Upper Saddle River (2000)

44. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing, Massachusetts. The MIT Press, Cambridge (1999)

45. Luqi: Transforming documents to evolve high-confidence systems. In: Proceedings
of Workshop on Advances in Computer Science and Engineering, Berkeley, CA,
pp. 71–72 (2006)

46. Erk, K., Pado, S.: Shalmaneser - a flexible toolbox for semantic role assignment.
In: Proceedings of LREC 2006, Genoa, Italy (2006)

47. Ge, N., Hale, J., Charniak, E.: A statistical approach to anaphora resolution. In:
Proceedings of the Sixth Workshop on Very Large Corpora, pp. 161–170 (1998)

48. Merialdo, B.: Tagging english text with a probabilistic model. Computational Lin-
guistics 20(2), 155–171 (1994)

49. Kupiec, J.: Robust part-of-speech tagging using a hidden markov model. Computer
Speech and Language 6, 225–242 (1992)

50. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated
corpus of english: The penn treebank. Computational Linguistics 19(2), 313–330
(1994)

51. Hwa, R., Osborne, M., Sarkar, A., Steedman, M.: Corrected co-training for statis-
tical parsers. In: Proceedings of the Workshop on the Continuum from Labeled to
Unlabeled Data in Machine Learning and Data Mining, International Conference
of Machine Learning, Washington, DC (2003)

52. Lee, B.S.: Automated conversion from a requirements document to an executable
formal specification. In: Proceedings of the 16th Annual International Conference
on Automated Software Engineering, ASE 2001, p. 437 (2001)

53. Ruth, G.R.: Automatic programming: Automating the software system develop-
ment process. In: ACM 1977: Proceedings of the 1977 annual conference, pp. 174–
180. ACM Press, New York (1977)

Logic-Based Regulatory Conformance Checking

Nikhil Dinesh, Aravind K. Joshi, Insup Lee, and Oleg Sokolsky

Department of Computer Science
University of Pennsylvania

Philadelphia, PA - 19104, USA
{nikhild,joshi,lee,sokolsky}@seas.upenn.edu

Abstract. In this paper, we describe an approach to formally assess
whether an organization conforms to a body of regulation. Conformance
is cast as a model checking question where the regulation is represented
in a logic that is evaluated against an abstract model representing the
operations of an organization. Regulatory bases are large and complex,
and the long term goal of our work is to be able to use natural language
processing (NLP) to assist in the translation of regulation to logic.

We argue that the translation of regulation to logic should proceed one
sentence at a time. A challenge in taking this approach arises from the
fact that sentences is regulation often refer to others. We motivate the
need for a formal representation of regulation to accomodate references
between statements. We briefy describe a logic in which statements can
refer to and reason about others. We then discuss preliminary work on
using NLP to assist in the translation of regulatory sentences into logic.

1 Introduction

Regulations, laws and policies that affect many aspects of our lives are repre-
sented predominantly as documents in natural language. For example, the Food
and Drug Administration’s Code of Federal Regulations1 (FDA CFR) governs
the operations of American bloodbanks. The CFR is framed by experts in the
field of medicine, and regulates the tests that need to be performed on donations
of blood before they are used. In such safety-critical scenarios, it is desirable to
assess formally whether an organization (bloodbank) conforms to the regulation
(CFR).

Conformance checking is a relatively new problem in requirements engineer-
ing, which has been gaining attention in industry and academia [1]. A key
difference between regulations and other sources of informal requirements is
in determining the source of a requirement. The requirements used to design
a system often arise from varied places, such as interviews with customers and
discussions with domain experts. This makes the identification of requirements a
difficult problem. However, since there are consequences associated with disobey-
ing the law, law-makers spend considerable effort in articulating the requirements

1 http://www.gpoaccess.gov/cfr/index.html

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 147–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 N. Dinesh et al.

(as normative sentences). As a result, one can informally associate a requirement
with a sentence or discourse.

The challenge in conformance checking is that the task of formalizing the
requirements is difficult, due to the large size and complexity of regulations.
The long term goal of our work is to use natural language processing (NLP)
techniques to aid in the formalization of regulation. From the perspective of
using NLP for requirements engineering, this area is epecially interesting due to
the availability of large corpora of regulations that can serve as a test-bed for
NLP techniques.

We approach the problem of formally determining conformance to regula-
tion as a model-checking question. The regulation is translated to statements
in a logic which are evaluated against a model representing the operations of
an organization. The result of evaluation is either an affirmative answer to con-
formance, or a counterexample representing a subset of the operations of the
organization and the specific law that is violated. A similar approach is adopted
by several systems [1,2,3].

When a violation is detected, the problem could be in one of three places:
(a) the organization’s operations, (b) the regulation or (c) the translation of
the regulation to the logic. To aid in determining the source of the problem,
there needs to be a notion of correspondence between the sentences of regulation
in natural language and logic. We attempt to maintain a correspondence by
translating regulation to logic one sentence at a time. An added benefit of doing
this is to be able to focus our NLP efforts at the sentence level.

In this paper, we discuss two related parts of our approach. The first part deals
with the issue of designing a logic into which we can translate regulation one
sentence at a time. The main difficulty that we encountered in doing this is the
problem of references to other laws. A common phenomenon in regulatory texts
is for sentences to function as conditions or exceptions to others. This function of
sentences makes them dependent on others for their interpretation, and makes
the translation to logic difficult. In Section 2, we argue (using examples and
lexical occurence statistics) that a logic to represent regulation should provide
mechanisms for statements to refer to others, and to make inferences from the
sentences referred to.2 In Section 3, we briefly describe the logic that we use to
represent regulation.

In the second part of the paper (Section 4), we turn our attention to the
problem of using NLP to assist in the translation of sentences of regulation into
logic. Section 5 concludes.

2 The Problem of References to Other Laws

In this section, we argue that a logic to represent regulation should provide
a mechanism for sentences to refer to others. The discussion is divided into
two parts. In Section 2.1, we discuss examples of the phenomenon that we are
2 A study in [1] suggests that such references between sentences are common in privacy

regulation as well.

Logic-Based Regulatory Conformance Checking 149

interested in and how they may be represented in a logic with no mechanism for
sentences to refer to others. We then contrast the distribution of some lexical
categories in the CFR with newspaper text, which suggest that references to
sentences are an important way of expressing relationships between sentences in
regulation (Section 2.2).

2.1 Examples

The examples in this section are shortened versions of sentences from the CFR
Section 610.40, which we will use through the course of the paper. Consider the
following sentences:

(1) Except as specified in (2), every donation of blood or blood component
must be tested for evidence of infection due to Hepatitis B.

(2) You are not required to test donations of source plasma for evidence of
infection due to Hepatitis B.

(1) conveys an obligation to test donations of blood or blood component for
Hepatitis B, and (2) conveys a permission not to test a donation of source plasma
(a blood component) for Hepatitis B. To assess an organization’s conformance
to (1) and (2), it suffices to check whether “all non-source plasma donations
are tested for Hepatitis B”. In other words, (1) and (2) imply the following
obligation:

(3) Every non-source plasma donation must be tested for evidence of infec-
tion due to Hepatitis B.

There are a variety of logics in which one can capture the interpretation of
(3), as needed for conformance. For example, in first-order logic, one can write
∀x : (d(x)∧¬sp(x)) ⇒ test(x), where d(x) is true iff x is a donation, sp(x) is true
iff x is a source plasma donation, and test(x) is true iff x is tested for Hepatitis
B. Thus, to represent (1) and (2) formally, we inferred that they implied (3) and
(3) could be represented more directly in a logic.

Now suppose we have a sentence that refers to (1):

(4) To test for Hepatitis B, you must use a screening test that the FDA has
approved for such use.

The reference is more indirect here, but the interpretation is: “if (1) requires a
test, then the test must be performed using an appropriate screening test kit”. A
bloodbank is not prevented from using a different kind of test for source plasma
donations. (4) can be represented by first producing (3), and then inferring that
(3) and (4) imply the following:

(5) Every non-source plasma donation must be tested for evidence of infec-
tion due to Hepatitis B using a screening test that the FDA has approved
for such use.

150 N. Dinesh et al.

It is easy to represent the interpretation of (5) directly in a logic. However,
(5) has a complex relationship to the sentences from which it was derived, i.e.,
(1), (2) and (4). The derivation takes the form of a tree:

(5)
(3)

(1) (2)
(4)

The examples we have considered are simplified versions of the sentences in
the CFR 610.40. In the CFR, (1) has a total of six exceptions, and the exceptions
have statements that qualify them further. This process of producing a derived
obligation and translating it becomes extremely difficult.

References to other laws are not always hierarchical or acyclic. There are two
kinds of circularities that can arise. The first is a syntactic circularity which
arises due to vague references. For example, two occurences of the phrase “re-
quired testing under this section” can give rise to a cycle if one interprets “this
section” as “all the other sentences in this section”. However, such phrases typ-
ically appear in paragraphs where no tests are required and the cycle can be
broken by restricting the references to paragraphs where tests are required. The
second kind of circularity is a semantic circularity which can make the regula-
tion paradoxical, e.g., with self referential sentences. Fortunately, we have not
observed such circularities.

To summarize, if one wishes to use a logic with no support for referring to
other sentences, translating regulation to the logic would involve the follow-
ing steps: (a) resolving circularites to construct a hierarchy of references, (b)
creating derived obligations by moving up the hierarchy, until a set of derived
obligations with no references are obtained, and (c) translating the final set of
derived obligations to logic.

This procedure would not be problematic if there are few cases of references.
In the following section, we discuss the distribution of some lexical categories in
the CFR which suggest that this is a very common case. This makes the proce-
dure impractical in terms of the effort that would be involved. The logic that we
describe in later sections lets one express references directly, and the resolution of
cirularites and creation of derived obligations happen as part of the semantics.

2.2 Distribution of Lexical Categories

In the previous section, we saw several examples of how sentences in regulation
refer to others. Natural language offers a variety of devices to relate sentences to
others. A large class of such devices fall under the rubric of anaphora, which is
a means of linking a sentence to the prior discourse. Common examples of such
anaphoric items are pronouns and adverbial connectives, e.g., however, instead,
furthermore, etc.3

3 Not all uses of pronouns are anaphoric. Some pronouns are bound by quantifiers,
e.g., every one loves their mother. We report counts based on occurence of strings
and do not distinguinsh between different uses.

Logic-Based Regulatory Conformance Checking 151

Table 1. Differences in the distribution of some anaphoric lexical items in the Wall
Street Journal (WSJ) corpus and the CFR. Both the WSJ and the CFR have approx-
imately 1M words.

Lexical Item WSJ CFR
he, she, him, her 8564 297
it, its 15168 2502
they, their 4500 862
ADV1 3162 2402
ADV2 2453 349
such 662 3028
References to other laws 18509

Table 1 contrasts the distribution of potentially anaphoric items in the Wall
Street Journal (WSJ) corpus, with the CFR. The first three rows show counts
of pronouns, and the CFR has a markedly lower number of pronouns than the
WSJ. The next two rows show counts of adverbial connectives. ADV1 comprises
of the connectives also, however, in addition, otherwise, for example, therefore,
previously, later, earlier, until and still. These connectives have specialized uses
in the CFR and tend to be quite frequent, with otherwise being the most frequent
in the CFR (517 cases). ADV2 is a set of 48 adverbial connectives annotated by
the Penn Discourse Treebank [4] excluding those in ADV1, e.g., instead, as a
result, nevertheless. The connectives in ADV2 are significantly more frequent in
the WSJ than in the CFR.

The last two rows in Table 1 show two common ways of establishing relation-
ships between sentences in the CFR. The adjective such is a common way of
refering to a set discussed in an immediately preceding law, e.g., such tests. The
last row counts explicit references to other law, by searching for phrases like this
section, or references to section and paragraph identifiers. Of the categories we
considered this is by far the most frequent in the CFR.

We now describe the logic that we use to handle references. The other fre-
quently occuring anaphora (ADV1 and such) are typically accompanied by ref-
erences (e.g., however and otherwise give exceptions to other laws), and similar
mechanisms can be used to express them. Formalizing the remaining anaphora
is a subject of future work.

3 A Logic That Allows References between Laws

In this section, we describe the logic that we attempt to translate the regulation
into. The description in this section is brief and informal, and introduces only
the machinery needed to clarify the discussion in Section 4. We refer the reader
to [5,6] for a formal account of the semantics and the computational issues.
Consider our examples again:

(6) Except as specified in (7), every donation of blood or blood component
must be tested for evidence of infection due to Hepatitis B.

152 N. Dinesh et al.

(7) You are not required to test donations of source plasma for evidence of
infection due to Hepatitis B.

(6) and (7) are represented as follows:

– 6.o: d(x) ∧ ¬by7(¬�test(x)) � �test(x) and
– 7.p: d(y) ∧ sp(y) � ¬�test(y)
First, consider the formula 7.p: d(y) ∧ sp(y) � ¬�test(y) . This is read as

“It is permitted that if y is a donation of source plasma, then it is not tested
eventually”. The letter p denotes permission, d(y) asserts that y is a donation,
sp(y) asserts that y consists of source plasma, test(y) asserts that y is tested,
and �is the linear temporal logic (LTL) operator eventually. The connective �
is a variant of implication which we will discuss in what follows.

Now consider the subformula by7(¬�test(x)) . This is read as “By the law (7),
x is not tested eventually”. We note that this subformula should hold iff y is a
donation of source plasma. And finally, 6.o: d(x)∧¬by7(¬�test(x)) � �test(x)
can be paraphrased as “It is obligated that if x is a donation and it is not the
case (7) doesn’t permit that x is not tested eventually, then x must be tested
eventually”. The letter o denotes obligation. Formulas in the logic are evaluated
with respect to sequences of states of an implementation (in a manner similar
to LTL). Each state is associated with a set of objects and a way of evaluating
predicates.

Table 2. A run and its annotations

Time Objects Predicates Annotations
1 o1 d(o1), sp(o1), ¬test(o1) 2: ¬�test(o1)
2 o1 d(o1), sp(o1), ¬test(o1) 2: ¬�test(o1)

o2 d(o2), ¬sp(o2), ¬test(o2) 1: �test(o2)
3 o1 d(o1), sp(o1), test(o1) 2: ¬�test(o1)

o2 d(o2), ¬sp(o2), ¬test(o2) 1: �test(o2)

Table 2 shows a possible run of a bloodbank. First, an object o1 is entered
into the system. o1 is a donation of source plasma (d(o1) and sp(o1) are true).
When a donation is added, its test predicate is initially false. Then, an object
o2 is added, which is a donation but not of source plasma. In the third step, the
object o1 is tested. Unless the run is extended to test o2, the bloodbank doesn’t
conform to the statements (6) and (7). We now discuss how the annotations are
arrived at, and used to assess the regulation.

We first evaluate 7.p: d(y) ∧ sp(y) � ¬�test(y) with respect to all variable
assignments. When y is assigned the value o1, the precondition d(y) ∧ sp(y) is
true, and we annotate the state with 7: ¬�test(o1) . This annotation happens
regardless of whether ¬�test(o1) is true or false under the variable assignment.

Next, we evaluate 6.o: d(x) ∧ ¬by7(¬�test(x)) � �test(x) . When x is as-
signed the value o1, d(x) is true. To evaluate by7(¬�test(x)) we check if there

Logic-Based Regulatory Conformance Checking 153

is an annotation (ψ) on the state such that ψ ⇒ ¬�test(o1) is valid, i.e., a theo-
rem in LTL. Since, ¬�test(o1) is an annotation this is an appropriate candidate
for ψ and we conclude that by7(¬�test(x)) is true. Hence the precondition
d(x) ∧ ¬by7(¬�test(x)) is false, and the obligation is vacuously satisfied.

When considering a non-source plasma donation (o2), no annotation is pro-
vided by 7.p: d(y)∧sp(y) � ¬�test(y) . We will not be able to find ψ such that
ψ ⇒ ¬�test(o2) is valid. This will make the precondition d(x)∧¬by7(¬�test(x))
true, and if a test is not performed eventually, a violation will be detected. Vio-
lations are detected only with respect to obligations. Permissons do not produce
violations and are relevant to conformance only via references from an obligation.
Complexity: In [5], we show that conformance checking is hard for EXPTIME.
The high complexity is due to the satisfiability tests that are needed to evaluate
references. A case study of the FDA CFR motivated a restriction, called the
single copy property, which allows us to compile out the satisfiability tests [6]. For
acyclic regulations, the compilation procedure yields first-order temporal logic
statements. Conformance checking with first-order logic is PSPACE-complete.
However, the exponential factor is determined by the maximum predicate-arity,
which tends to be small. [6] describes algorithms for checking conformance at
runtime, and an evaluation using a prototype implementation.
Related Work: The logic describe here is a starting point in adding references
to systemes such as [2,3]. [2] represents business contracts as SQL queries, and
[3] uses first-order logic augmented with real time operators. References can
be added to these systems, provided that the existential quantification is rela-
tivized to either the preconditions or the postconditions. However, restrictions
are needed to ensure that the satisfiability tests remain decidable. [1] discusses
the importance of anlayzing references, but do not provide a formalization.

4 NLP as an Aid in Formalizing Regulation

In this section, we discuss preliminary work on using natural language processing
(NLP) to aid in creating a logic-based representation of regulation. We emphasize
that we use NLP purely as an assistive technology and do not attempt to replace
the human user.4

We approach the problem using the supervised learning methodology, which
has been used for a variety of tasks in NLP, e.g., parsing, computing predicate-
argument structure, named-entity recognition etc. The supervised learning
methodology proceeds as follows:

1. Define a representation (logic) to be computed from the text
2. Manually describe/annotate how units of text correspond to units of the de-

sired representation. The number of examples manually annotated depends
on the needs of the application.

3. Train a (statistical) learning algorithm to compute the representation.
4 The intended users of our system are designers of software in the organization being

regulated.

154 N. Dinesh et al.

Our focus upto this point has been on Steps 1 and 2, i.e., designing the logic
and formulating an annotation scheme to associate natural language and logic. In
order for the methodology to be successful, it should be possible for a human to
describe how she went from natural language to logic. Such a description would
take the form of an annotation guideline. For example, [7] gives guidelines for
annotating phrase structure on sentences, and [8] gives guidelines for annotating
discourse relations. The process of formulating guidelines is typically one of
iterative refinement. We begin by fixing a representation, and then annotating
a few sentences with this representation. The problematic cases are analysed,
resulting in revisions to the guidelines, and the process repeats.

We have made three annotation passes over 100 sentences and are in the pro-
cess of refining guidelines. The rest of this section describes what we are attempt-
ing to annotate and the difficulties encountered. In Section 4.1, we decompose
the annotation process into three steps. Some of the key problems encountered
are discussed in Sections 4.2 and 4.3. Section 4.4 discusses related work. A pre-
liminary discussion of our approach appears in [9]. We have since extended the
logic and annotation guidelines.

4.1 Translating Regulatory Sentences to Logic

Many logics are semantically adequate for the application of conformance check-
ing. However, to be able to describe or annotate how a statement in logic is
obtained from natural language, the logic and natural language need to be syn-
tactically isomorphic. (8) and (9) are examples of what we mean by syntactically
isomorphic statements in natural language and logic.

(8) Every donation must be tested

(9) 8.o: donation(x) � tested(x)

We note that predicates such as tested(x) need to be refined to accomodate
references between laws, and we discuss this issue in what follows. We now sketch
the procedure for associating (8) and (9).

First, (8) is mapped to the abstract syntax tree (AST):

.
must x

every donation x be tested

The AST is obtained from (8) by moving the modal must, followed by moving
the phrase every donation to the front of the sentence. While moving a word or
phrase, a variable is optionally left behind as a placeholder.

The second step is to associate leaf nodes which are not the leftmost child
of their parent with components of the formula. donation is associated with the
predicate donation(x), and x must be tested is associated with the predicate
tested(x).

Given the associations for non-leftmost leaves, the leftmost leaves are associ-
ated with operations that combine the associations of their siblings to create an

Logic-Based Regulatory Conformance Checking 155

association for the parent. every is associated with an operation that combines
the associations of its siblings to associate donation(x) � tested(x) with its
parent. Finally, must is associated with an operation that takes donation(x) �
tested(x) and associates 8.o: donation(x) � tested(x) with its parent. This
procedure for translating natural language to logic can be broken into three
steps:

1. Converting a sentence to an AST
2. Associating the non-leftmost leaves of the AST with components of the logic
3. Associating the leftmost leaves with combination operations

This decomposition of the problem is the one adopted (modulo terminology)
in theoretical linguistics [10]. Of these steps, our goal is to achieve automation
with a good level of accuracy for Step 1. For Steps 2 and 3, we can only envision
partial automation in the immediate future. The goal is to design appropriate
interfaces to assist the user in performing these steps. We now discuss some of
the challenges in associating regulatory sentences with ASTs (Section 4.2). We
then turn to a discussion of some issues related to Steps 2 and 3 in Section 4.3.

4.2 Annotating Sentences with ASTs

The AST produced from a sentence is a resolution of scope ambiguities. The
sentence (8) above is simple in comparison to the sentences that one encounters
in regulatory text, where a sentence has multiple noun phrases and modalities.
Consider the following sentence from CFR 610.1 (the AST is shown in Figure 1):

(10) No lot of any licensed product shall be released by the manufacturer
prior to the completion of tests for conformity with standards applicable
to such product.

(11) 10.o: licensedProduct(x)∧lotOf(y, x)∧priorT o(ϕ)∧manufacturer(z)�
¬releasedBy(y, z)

For simplicity, we omit some details from (11). The phrase the completion of
tests for conformity with standards applicable to such product involves a reference
to other laws, i.e., the applicable standards appear in various places in Part 610.
The subformula priorT o(ϕ) in (11) can be formalized using a variant of the
technique discussed in Section 3. We now discuss some issues related to (10),
(11) and the AST in Figure 1.

Consider again the phrase the completion of tests for conformity with stan-
dards applicable to such product. While we can give this phrase an internal stuc-
ture in the AST, we do not know how to associate it structurally to its formal
interpretation. In other words, from the perspective of translation, the phrase
has to be treated as an idiom of sorts. In annotating a sentence with its AST,
we give such phrases an internal structure and leave the problem of treating it
as an idiom to subsequent steps.

Another issue is the question of what to move. In many linguistic theories,
only quantificational noun phrases, e.g., any product, are treated as candidates

156 N. Dinesh et al.

.

shall x

any
licensed
product y

No lot of x z

the manufacturer .

prior to the completion ... y be released by z

Fig. 1. AST for (10). The structure for the noun phrase the completion of tests for
conformity with standards applicable to such product is not shown.

for movement. In our annotation scheme, the constructs that are moved are
noun phrases, coordinated and subordinated phrases/clauses, relative clauses,
and some modals and adverbs. This lets use describe the scopal interaction of
these constructions without having to construct a separate phrase structure tree,
thus saving annotation effort.

A difficulty in annotating ASTs is that there are many constructions in nat-
ural language which we do not know how to formalize. Consider the following
statement:

(12) You must perform one or more such tests, as necessary, to reduce ade-
quately and appropriately the risk of transmission of communciable dis-
ease.

must x

one or more such
tests

as necessary

to reduce ... you perform x

Fig. 2. AST for (12). The structure for the clause reduce adequately and appropriately
the risk of transmission of communciable disease is not shown.

In (12) it is unclear how to order one or more such tests, as necessary and
to reduce adequately and appropriately the risk of transmission of communciable
disease. The intended interpretation of this sentence (which is also unclear) is
“if a test is required, then it must be performed repeatedly until a conclusive

Logic-Based Regulatory Conformance Checking 157

result is obtained”.5 In such cases, we construct an AST following the surface
order of the phrases, as shown in Figure 2.

The point to take from this discussion is that not all the structure provided
in an AST can be mapped directly to logic. On occasion one has to “undo”
some of the movements in order to perform the association. An analogous situa-
tion arises in the problem of alignment in machine translation (between natural
languages). One cannot always find a syntactically isomorphic translation of an
English sentence into French. Certain constructions have to be treated idiomat-
ically. In translating to logic, the number of constructions that we have to treat
idiomatically give us a way to evaluate the syntactic expressive power of the
logic. If there are many such constructions, it would suggest that the logic needs
to be extended. We now discuss issues in associating the leaves of the AST with
formulas in logic.

4.3 Associating the Leaves of ASTs with Logic

In Section 4.1, we gave the AST for the sentence “every donation must be tested”.
The leaf node “x be tested” was associated with the predicate tested(x). In order
to accomodate references between laws, we need to be able to infer, for exam-
ple, that “if no tests are required, then a test for Hepatitis B is not required”.
Such inferences would not succeed if we used predicates such as tested(x) and
testedForHepatitisB(x) (we need ¬tested(x) ⇒ ¬testedForHepatitisB(x) to
be valid). To handle such cases, we approach the definition of the set of predicates
in two steps, which we describe below.

The first step is creating a schema. A schema is a set of class definitions. A class
definition consists of a set of attribute definitions, and an attribute definition is
a name associated with a type. The types of attributes are taken to be either
atomic values (numbers or strings), references or sets of references. For example,
the class Donation has an attribute named tests which is a set of references to
objects in the class Test.

Predicates are treated as assertions over instances of the schema and are
defined using a description logic. The logic that we use combines graded modal
logic (modal logic with counting quantifiers), and hybrid logic (which allows
one to refer to particular objects). The predicate “testedForHepatitisB(x)” is
formalized as: @x(∃tests : (purpose = Hepatitis B)), read as “at the object
referred to by x, there is an object referenced in the tests attribute and the
purpose attribute of the test object has the value “Hepatitis B”.

Given a set of documents, there are many ways one could create a schema,
depending on domain knowledge and taste. Designing NLP-based interfaces to
aid in the extraction of schemas has been explored in the past [11,12]. Our goal
is to adapt previous work to the regulatory domain. Both creating the schema
and defining the predicates will require significant manual intervention.

The key challenge in translating natural language to logic (for our applica-
tion) is being able to decompose the problem into steps that depend mostly on

5 The intended interpretation was clarified in a memo released by the FDA.

158 N. Dinesh et al.

the text, and steps that depend mostly on domain knowledge. We believe that
the computation of ASTs and the creation of schemas can be tied closely to the
text, and as more documents are formalized better accuracy can be achieved.
The problem of creating predicate definitions would benefit from further decom-
position, and to our knowledge, this is an open problem.

4.4 Related Work

The problem of translating natural language to logic has received much attention
in theoretical linguistics [13]. There are many problems both in the design of logic
and the translation procedure that have yet to be resolved. More recently, there
have been efforts in NLP to automate this translation for some applications.

[14,15] show that a good degree of automation can be achieved when the text
is constrained. The sentences considered are queries to geographical database,
e.g., “Which states does the river Delaware run through?”. The specific corpus
considered associates each sentence to logic. The associations between compo-
nents of a sentence and logic are computed during the learning phase. While this
approach reduces the annotation effort, the inference of associations during the
learning step becomes more difficult.

[16] describes a corpus annotated using a manually crafted Head-driven Phrase
Structure Grammar (HPSG). In addition to parse trees, a translation to logic is
associated. The logic produced is similar in spirit to the ASTs that we annotate.
We do not adopt this approach directly for two reasons. First, the annotation of
ASTs avoids the overhead of creating phrase structure trees. Second, the logic
produced in [16] introduces a large number of predicates (approximately one per
word), and this makes the formulas large and difficult to refine. The leaves of
the AST are typically phrases, and we have found in case studies that it is easier
to define predicates at this level of granularity.

[17] discusses an approach to computing wide-coverage semantic interpreta-
tion. The goal is to be able to produce approximate translations in first-order
logic and carry out inferences. Similar problems arise in the definition of pred-
icates. The envisioned applications are those for which some errors in the logic
produced are tolerable. For our application, while it may be impossible to avoid
errors, the goal is to provide a correct translation of a sentence. This involves
a careful analysis of modalities, which is not possible in current wide-coverage
techniques.

5 Conclusions and Future Work

We have motivated the need for a formal representation of regulation to acco-
modate references between laws (Section 2). We described, in Section 3, a logic
that accomodates certain kinds of references, i.e., those appearing in precondi-
tions. There is also the need for reference in postconditions, to express naturally
cases where one law cancels obligations and permissions given by another. We
are currently working on extending the logic to allow such references.

Logic-Based Regulatory Conformance Checking 159

In Section 4, we described preliminary work on using NLP to assist in creating
the formal representation of regulation. In NLP, the focus has been on computing
information tied to the surface structure of the sentence, such as parse trees
and predicate-argument structure. However, in formalizing requirements, we are
often interested in inferences drawn from sentences and the context. Relating
these inferences back to the surface structure of a sentence poses interesting
challenges to both NLP and formal methods.

We have focussed entirely on regulatory requirements in this paper, and de-
signed machinery to accomodate its peculiarities. The logic that we have de-
veloped is useful for expressing rules with a large number of exceptions. Since
the logic and the annotation of ASTs are not independent, there will be chal-
lenges in adapting the approach to different kinds of requirements. A particu-
larly challenging aspect is the large number of modalities in natural language. In
the regulatory texts that we have examined, time and obligation are the salient
modalities, but this may not be the case for other kinds of requirements. A study
of requirements in different domains is a topic for further research.

References

1. Breaux, T.D., Vail, M.W., Anton, A.I.: Towards regulatory compliance: Extracting
rights and obligations to align requirements with regulations. In: Proceedings of
the 14th IEEE International Requirements Engineering Conference (2006)

2. Abrahams, A.: Developing and Executing Electronic Commerce Applications with
Occurrences. PhD thesis, Univeristy of Cambridge (2002)

3. Giblin, C., Liu, A., Muller, S., Pfitzmann, B., Zhou, X.: Regulations Expressed
as Logical Models (REALM). In: Moens, M.-F., Spyns, P. (eds.) Legal Knowledge
and Information Systems (2005)

4. Miltsakaki, E., Prasad, R., Joshi, A., Webber, B.: The Penn Discourse Treebank.
In: LREC (2004)

5. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Reasoning about conditions and excep-
tions to laws in regulatory conformance checking. (in submission) (2008),
http://www.cis.upenn.edu/∼nikhild/reasoning.pdf

6. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Checking traces for regulatory con-
formance. In: Proceedings of the Workshop on Runtime Verification (to appear,
2008)

7. Bies, A., Ferguson, M., Katz, K., MacIntyre, R.: Bracketing guidelines for Treebank
II style Penn Treebank Project (1995),
ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/root.ps.gz

8. The PDTB Group: The Penn Discourse Treebank 1.0 Annotation Manual. Tech-
nical Report IRCS-06-01, IRCS (2006)

9. Dinesh, N., Joshi, A.K., Lee, I., Webber, B.: Extracting formal specifications from
natural language regulatory documents. In: Proceedings of the Fifth International
Workshop on Inference in Computational Semantics (2006)

10. May, R.: Logical Form: Its structure and derivation. MIT Press, Cambridge (1985)
11. Overmeyer, S.P., Lavoie, B., Rambow, O.: Conceputal modeling through linguistic

analysis using lida. In: 23rd International conference on Software Engineering, pp.
401–410 (2001)

http://www.cis.upenn.edu/~nikhild/reasoning.pdf
ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/root.ps.gz

160 N. Dinesh et al.

12. Bryant, B.R.: Object-oriented natural language requirements specification. In:
ACSC 2000, The 23rd Australasian Computer Science Conference (January 2000)

13. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell, Malden (1998)
14. Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: Struc-

tured classification with probabilistic categorial grammars. In: Proceedings of UAI
(2005)

15. Wong, Y.W., Mooney, R.J.: Learning synchronous grammars for semantic parsing
with lambda calculus. In: Proceedings of ACL (2007)

16. Oepen, S., Flickinger, D., Toutanova, K., Manning, C.: LinGO Redwoods: A rich
dynamic treebank for HPSG. In: Proceedings of the workshop on treebanks and
linguistic theories (2002)

17. Bos, J., Clark, S., Steedman, M., Curran, J.R., Hockenmaier, J.: Wide-coverage
semantic representations from a CCG parser. In: Proceedings of COLING (2004)

On the Identification of Goals in Stakeholders’ Dialogs

Leonid Kof

Fakultät für Informatik, Technische Universität München,
Boltzmannstr. 3, D-85748 Garching bei München, Germany

kof@informatik.tu-muenchen.de

Abstract. Contradictions in requirements are inevitable in early project stages.
To resolve these contradictions, it is necessary to know the rationale (goals) that
lead to the particular requirements. In early project stages one stakeholder rarely
knows the goals of the others. Sometimes the stakeholders cannot explicitly state
even their own goals. Thus, the goals have to be elaborated in the process of
requirements elicitation and negotiation.

This paper shows how the goals can be derived by systematic analysis of stake-
holders dialogs. The derived goals have to be presented to the stakeholders for
validation. Then, when the goals are explicitly stated and validated, it becomes
easier to resolve requirements contradictions.

1 Introduction

When a complex system is developed, there exist many different stakeholders or stake-
holder groups whose interests should be taken into account. For example, if we build
a drive-by-wire system, the obvious stakeholders would be the car manufacturer itself
(OEM, original equipment manufacturer), prospective drivers, service staff, and the leg-
islator. Every stakeholder has his own goals. These goals can be conflicting. For exam-
ple, one of the OEM’s goals may be cost reduction. Cost reduction can be achieved, for
example, by reducing the brake system to the rear wheels only. This would conflict with
the legislator’s goal to provide road safety.

The above example of goal conflict should be obviously resolved before the goals are
refined. In the case that the goal conflicts are less apparent, the goals could be refined to
finer subgoals, before the conflict becomes apparent. For example, the legislator’s goal
to provide road safety does not conflict with the road maintainer’s goal to minimize
wearing down of the road surface by the cars. However, reasonable refinements of these
goals can become conflicting: “provide road safety” can be refined to “use caterpillars
instead of wheels”, whereas “minimize wearing down of the road surface” can be re-
fined to “prohibit caterpillars”. This conflict cannot be resolved, unless we retreat to the
original goals and look for alternative goal refinements.

The problem of conflicting goal refinements is not really a problem, as long as ev-
ery stakeholder can explicitly state his top-level goals. The normal project situation is,
however, that stakeholders themselves have rather vague ideas about their own goals. In
this case they can intuitively identify requirements that are problematic (i.e., conflicting
with their goals). Conflict resolution, however, results in looking for a requirements set
satisfying every stakeholder. This can be a rather tedious business, particularly when
goals are not explicitly specified.

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 161–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 L. Kof

To facilitate the whole requirements engineering process, it is important to identify
the stakeholder goals as early as possible. This paper discusses possibilities of goal
identification on the basis of stakeholders’ dialogues transcripts.

The remainder of the paper has 6 sections. Section 2 introduces the case study used to
illustrate the approach. Section 3 gives an overview of goal-oriented requirements engi-
neering, including rules of thumb to identify goals. Section 4 shows how the goals can be
manually identified in the case study. Section 5gives an overview of available approaches
to natural language processing (NLP) and their applications to requirements engineering.
Here, the idea is to use NLP for goal identification. Then, Section 6 shows how goal iden-
tification could be automated. Finally, Section 7 summarizes the whole paper.

2 Case Study

The procedure for goal identification, presented in this paper, is evaluated on a small
case study on an airport screening system. The case study is just a two-page document,
representing an online stakeholder discussion [1]. This document does not contain any
explicitly stated requirements. To give a flavor of the document, Table 1 presents the
first three paragraphs of the document.

There are three stakeholders participating in the discussion: a representative of the
Transportation Security Administration (TSA), a representative of the Federal Aviation
Administration (FAA), and a representative of the airport screening and security staff.
The case study represents a rather intense discussion, where none of the stakeholders
explicitly states his goals. They all agree on the goal that air traffic security should
be improved, but they see different problems and propose different solutions to the
common goal. Altogether, each writes just 4-5 paragraphs, which is surely not enough to
identify all requirements. However, the statements of every stakeholder are motivated by
his goals, which makes the case study a good example to demonstrate goal extraction.

Table 1. Stakeholders’ dialogue, excerpt

Federal Aviation Administration: We have to ban on airplane passengers taking liquids on
board in order to increase security following the recent foiled United Kingdom terrorist
plot. We are also working on technologies to screen for chemicals in liquids, backscatter,
you know. . .

Airport Screening and Security: Technologies that could help might work well in a lab,
but when you use it dozens of times daily screening everything from squeeze cheese to
Channel No. 5 [sic] you get False Alarms. . . so it is not quite ready for deployment!

Federal Aviation Administration: Come on! Generating false positives helped us stay alive;
maybe that wasn’t a lion that your ancestor saw, but it was better to be safe than sorry.
Anyway, I want you to be more alert - airport screeners routinely miss guns and knives
packed in carry-on luggage.

3 Goal-Oriented Requirements Engineering

Software development involves different stakeholders, and conflicts among stakehold-
ers are common. To resolve the conflicts, it is vital to know not only the position of

On the Identification of Goals in Stakeholders’ Dialogs 163

every stakeholder, but also the rationale for the position, originating from some goal.
This idea is the basis for the Win-Win negotiation approach [2].

A goal in requirements engineering is “an objective the system under considera-
tion should achieve” [3]. In order to satisfy some goals, cooperation of several active
components, or agents can be required. For example, to achieve the goal “safe air trans-
portation” it is necessary that the administrative authorities and the airport screening
staff cooperate.

Goals can be refined to subgoals in two ways. There exist AND and OR refinements.
If some goal is AND-refined to a set of subgoals, it is necessary to satisfy all the sub-
goals to satisfy the original goal. For example, the goal “safe air transportation” can be
AND-refined to the goals “proper aircraft maintenance” and “no terrorists on board”,
which have both to be satisfied in oder to achieve “safe air transportation”. If some goal
is OR-refined to a set of subgoals, it is sufficient to satisfy one of the subgoals to sat-
isfy the original goal. For example, the goal “no explosives in carry-on luggage” can be
OR-refined to “do not allow any carry-on luggage” and “screen carry-on luggage”.

To identify goals, two key questions can be applied: “WHY” and “HOW”. An answer
to a “HOW”-question for a goal gives a possible refinement of the goal. An answer
to a “WHY”-question for a goal identifies its superior goals. For example, if we ask
“WHY” the goal “screen carry-on luggage”, we get that “there be no explosives in
carry-on luggage” and, perhaps, that “there be no sharp items in carry-on luggage” and
that “there be no liquids in carry-on luggage”.

Apart form asking “WHY”- and “HOW” questions, there are two further way to
identify goals:

– List the problems of the existing system. The negation of every problem becomes
a goal of the system to be built.

– Look for goal-indicating expressions in the requirements document, like “purpose”,
“objective”, “concern”, “intent”, “in order to”, etc.

Van Lamsweerde provides a much more thorough introduction to goal-oriented require-
ments engineering [3].

4 Case Study: Manual Goal Identification

In the ideal world, every stakeholder could explicitly state his goals and identify contra-
dictions to other stakeholders’ goals. The small case study, treated in this paper, shows
that this is not the case in the real world. In the stakeholders’ dialog, the goals are mostly
implicit, they manifest themselves in proposals that a stakeholder makes and in objec-
tions to the proposals made by others. For example, in the case study the FAA officer
opens the discussion with the statement that “We have to ban on airplane passengers
taking liquids on board in order to increase security following the recent foiled United
Kingdom terrorist plot.” In this sentence, a goal is explicitly stated, introduced by the
phrase “in order to”. The reaction to this statement shows the goal of the airport screen-
ing staff, rather indirectly: “Technologies that could help might work well in a lab, but
when you use it dozens of times daily screening everything from squeeze cheese to
Channel No. 5 [sic] you get False Alarms... so it is not quite ready for deployment!”

164 L. Kof

The actual goal is the application of screening techniques in day-to-day operation, not
distinguishing squeeze cheese from explosives.

In the case study, we can identify the goals by asking the question for each statement,
why the statement was made by its uttering stakeholder. In this way, we can identify the
following goals of the stakeholders:

– Goals of the Federal Aviation Administration:
improvement of security: “We have to ban on airplane passengers taking liquids

on board in order to increase security following the recent foiled United King-
dom terrorist plot”

effectiveness: “We are trying to federalize checkpoints and to bring in more man-
power and technology”

– Goals of the Transportation Security Administration:
improvement of security:

pro-active thinking: “We have yet to take a significant pro-active step in pre-
venting another attack everything to this point has been reactive”

consistency in regulations: “I think that enforcing consistency in our regula-
tions and especially in their application will be a good thing to do”

– Goals of the airport screening and security staff:
application of the rules in everyday operation: “Technologies that could help

might work well in a lab, . . . , so it is not quite ready for deployment”, “It’s
not easy to move 2 million passengers through U.S. airports daily”

cost effectiveness for the airlines: “I mean an economic threat is also a threat”
consistency in rules: “There are constant changes in screening rules - liquids/no

liquids/3-1-1 rule”

These goals are not contradiction-free. By analyzing the document, it is possible to
identify following contradictions:

– proactive thinking, which is a TSA goal, vs. cost effectiveness, which is an FAA
goal. Actually, this is not necessarily a contradiction, but it sounds like a contradic-
tion in the dialog.

– responsibility for the security checks: airlines become responsible, which is an FAA
goal, vs. the authority currently performing the checks remains responsible.

– acceptability of false positives: acceptable for FAA, not acceptable for the screening
staff

Probably due to the fact that each stakeholder considers his own goals as obvious,
no one ever explicitly states them. Instead, each stakeholder presents solutions that
seem adequate to him and explains why he thinks the solutions proposed by others are
problematic. This observation about indirect goal statements will be used in Section 6
in order to systematize and potentially automate the identification of goals.

5 Natural Language Processing in Requirements Engineering

Traditionally, natural language processing is considered as taking place at four layers:
lexical, syntactic, semantic, and pragmatic. Analysis tasks and result types for every
kind of analysis are sketched in Table 2.

On the Identification of Goals in Stakeholders’ Dialogs 165

Table 2. Classification of text analysis techniques

Approach type Analysis tasks Analysis results
lexical identify and validate the terms set of terms used in the text
syntactic identify and classify terms, build

and validate a domain model
set of terms used in the text and a
model of the system described in
the text

semantic build a semantic representation of
every sentence

logical representation of every
sentence, formulae

pragmatic build a representation of the text,
including links between sentences

logical representation of the
whole text, formulae

For all layers except pragmatic there exist analysis techniques, either potentially au-
tomatable or already automated. Lexical techniques are the simplest. They consider
each sentence as a character or word sequence, without taking further sentence struc-
ture into account. Due to this simplicity lexical techniques are extremely robust. The
flip side of this robustness is that lexical methods are limited to pure term extraction.
Syntactic approaches, as opposed to lexical ones, take also sentence structure into con-
sideration. Based on this sentence structure, they extract not only the terminology, but
also some domain model. Semantic approaches achieve more than the previous two
classes: they produce a formal representation of the text. It is mostly a kind of first or-
der predicate logic, but the concrete representation may differ. This task is surely very
demanding, which poses severe limitations on the text for the approaches to work. As
for pragmatics analysis, there is no automated procedure yet. There exist, however, a
logic capable of capturing pragmatics-motivated relations between sentences.

The remainder of this section describes different kinds of text analysis approaches in
more detail: Section 5.1 introduces the lexical approaches, Section 5.2 introduces the
syntactic approaches and Section 5.3 introduces the semantic approaches. Section 5.4
presents the logic to capture pragmatic relations between sentences. Finally, Section 5.5
discusses the applicability of different kinds of analysis to goal identification.

5.1 Lexical Approaches: Analyzing the Document Vocabulary

The goal of lexical approaches is to identify concepts used in the requirements docu-
ment. They do not classify the identified terms or build a domain model. The common
feature of these techniques is that they analyze the document as only a sequence of
characters or words. Berry [4] lists several approaches applying lexical techniques to
requirements engineering. To give the flavor of lexical approaches, the following will
be considered here: AbstFinder by Goldin and Berry [5], lexical affinities by Maarek
and Berry [6] and documents comparison by Lecoeuche [7].

AbstFinder [5] works in the following way: it considers each sentence simply as a
character sequence. Such character sequences are compared pairwise to find common
subsequences. These subsequences are assumed to be potential domain concepts to be
approved by the user. For example, consider two sentences taken from the steam boiler
case study [8]:

166 L. Kof

The steam-boiler is characterized by the following elements:

and

Above m2 the steam-boiler would be in danger after five seconds, if the pumps
continued to supply the steam-boiler with water without possibility to evacuate
the steam.

The first sentence is shorter and it is augmented with spaces before the start of the search
for common character subsequences. Then one of the sentences is rotated character-
wise and for each rotated position AbstFinder controls whether there are aligned com-
mon subsequences. Rotation of the sentences is necessary to identify character chunks
placed differently, like “flight” and “book” from “The flights are booked” and “He is
booking a flight”. (This example is taken from the AbstFinder article [5].) Such analysis
is performed for all sentence pairs.

For the steam boiler example introduced above, the aligned position would look like

The steam-boiler is characterized by...
Above m2 the steam-boiler would be in danger...

In this case AbstFinder would identify “the steam-boiler” as a concept contained in the
document.

However, when considering two other sentences from the steam boiler specification,
like

Below m1 the steam-boiler would be in danger after five seconds, if the steam
continued to come out at its maximum quantity without supply of water from
the pumps

and

Above m2 the steam-boiler would be in danger after five seconds, if the pumps
continued to supply the steam-boiler with water without possibility to evacuate
the steam

AbstFinder would identify “the steam-boiler would be in danger after five seconds, if
the” as a common concept. This is not a concept that can be used to model the ap-
plication domain. To decide which extracted sequences of characters really represent
application-specific concepts, human analyst has to approve the extracted concepts.

The approach by Maarek [6] identifies concepts as word pairs where the appearances
of these two words in the same sentence correlate. For example, “steam” and “boiler”
often co-occur in the steam boiler specification [8], so this approach would identify
“steam boiler” as an application concept.

Both Goldin and Berry and Maarek assume that the most important terms can be
identified as the most frequent ones. Thus, they would miss an important term that is
used only once, e.g. in the title or in the once-mentioned explanation of an acronym.

The approach by Lecoeuche [7] is more selective, in the sense that it not only extracts
concepts, but also measures their importance and neglects concepts whose importance
does not reach the manually set threshold. The approach compares the frequency of

On the Identification of Goals in Stakeholders’ Dialogs 167

the concept in the analyzed document with the frequency of the same concept in some
baseline document. Let Fa be the number of occurrences of some term in the ana-
lyzed document and Fb the number of occurrences of the same concept in the baseline
document. Then, the importance measure of a concept is defined as imp = Fa

Fa+Fb
.

High importance measure can imply that the concept is mentioned just few times in
the baseline document (for example in the definitions), but is mentioned many times
in the analyzed document. Concepts with a high importance measure are identified as
application domain concepts.

Sawyer et al. [9] apply a similar idea to identify application domain concepts. The
difference lies in the definition of the baseline documents: For the Lecoeuche’s ap-
proach, the baseline document has to be provided by the user, whereas Sawyer et
al. compare term frequency in the analyzed document with the term frequency in ev-
eryday usage. A term whose frequency in the analyzed document significantly differs
from the frequency in everyday usage is considered as an important application domain
concept.

It is easy to use lexical analysis to identify many potential goals. Van Lamsweerde
suggests in [3], for example, to identify potential goals in requirements documents by
means of certain key phrases, like “purpose”, “objective”, “concern”, “intent”, “in order
to”, etc. This technique can be used in our case study as well (cf. Section 6).

5.2 Syntactic Approaches: Identifying Terms and Relations

Syntactic approaches, presented in this section, promise more than pure vocabulary
analysis. These approaches became widely known in the field of object-oriented analy-
sis, as they allow for easy mapping of extracted concepts to classes, objects, attributes
and methods. Some of these approaches do not offer any automation in their original
versions, but they could be partially automated using linguistic techniques available
now. Complete automation is still not possible, both due to low precision of the avail-
able tools and due to necessity to adapt the tools to every concrete document to analyze.

One of the first approaches aiming at analysis of specification texts is the one by
Abbott [10]. The goal of Abbot’s approach is to

“... identify the data types, objects, operators and control structures by looking
at the English words and phrases in the informal strategy”

Abbott takes the following types of words and phrases into consideration during model
building:

– common nouns
– proper nouns and other forms of direct reference
– verbs and attributes

These word types are used in the following way during model building:1

1. A common noun in the informal strategy suggests a data type.
2. A proper noun or a direct reference suggests an object.

1 This list and the examples are taken from Abbott’s paper [10].

168 L. Kof

3. A verb, predicate or descriptive expression suggests an operator.
4. The control structures are implied in a straightforward way by the English.

This strategy works in the following way: given the specification text like

If the two given DATEs are in the same MONTH, the NUMBER OF DAYS
between them is the difference between their DAYs of MONTH,

Abbott identifies the common nouns (capitalized in the above example) as data types.
A similar strategy is applicable to objects: in a phrase like

Determine the number of days between THE EARLIER DATE to the end
of its month. Keep track of this THAT NUMBER in the variable called
“DAY COUNTER”

there are direct references “THE EARLIER DATE” and “THAT NUMBER”, marked
by “the”/“that” and a proper noun “DAY COUNTER”. They are identified as program
objects.

The third kind of concepts translated from text to program, the operators, are iden-
tified either as verbs or as attributes or descriptive expressions. For example, in the
sentence

If the two given dates ARE IN THE SAME MONTH, THE NUM-
BER OF DAYS between them is the DIFFERENCE BETWEEN their
DAYS OF MONTH,

there is a predicate “ARE IN THE SAME MONTH” and descriptive expres-
sions “THE NUMBER OF DAYS”, “DIFFERENCE BETWEEN” and “DAYS OF -
MONTH”, which become program operators.

Abbott’s procedure gives some guidelines for translating the specification text into a
program, but these guidelines are not completely automatable. Given a part-of-speech
(POS) tagger, attaching a POS-tag to every word, it would be possible to identify nouns,
verbs, etc. Such taggers were not available at the time Abbott wrote the paper but are
available now. The precision of currently available taggers lies at about 97% [11,12].
Even the most precise tagger does not achieve a 100% precision and can become an
error source.

A POS tagger would allow to identify common and proper nouns: We could say
that a common noun is any word assigned the noun tag. Identification of proper nouns
is a bit more complex. There exist approaches to recognize standard classes of proper
names, i.e. names of people, places and organizations [13]. These approaches can also
be transferred to other classes of proper names, as for example shown by Witte et al. [14]
for programming concepts, i.e. variables, classes, and objects. However, to apply these
techniques, it is necessary to manually define the set of domain-specific keywords. For
example, Witte et al. introduce the keyword “variable” for variables and then recognize
names like “variable X” as variable names. To apply Abbott’s rules to the above exam-
ple, we would have to manually define “counter” as a keyword. Then, we could identify
“DAY COUNTER” as well as other counters as program objects.

Abbott’s third rule is really difficult to automate: Abbott himself gives examples of
operators expressed by a verb, a noun phrase, or a prepositional phrase. However, he

On the Identification of Goals in Stakeholders’ Dialogs 169

does not provide guidelines how to distinguish phrases representing an operator from
non-operator phrases.

Chen’s method of building entity-relationship (ER) diagrams [15] is similar to Ab-
bott’s approach in that each maps natural language texts to application domain models.
Chen defines a set of rules for translating English text to ER diagrams. The first two
rules coincide with Abbott’s ones:

1. A common noun corresponds to an entity type.
2. A transitive verb corresponds to a relationship type.

Other rules are specific to the ER-representation:

3. An adjective in English corresponds to an attribute of an entity in the ER-diagram.
4. An adverb in English corresponds to an attribute of a relationship in an ER-diagram.
8. The objects of algebraic or numeric operations can be considered as attributes.
9. A gerund in English corresponds to a relationship-converted entity type in ER-

diagrams.

The remaining rules address firm expression patterns:

5. If the sentence has the form: “There are . . . X in Y”, we can convert it into the
equivalent form “Y has . . . X”

6. If the English sentence has the form “The X of Y is Z” and if Z is a proper noun, we
may treat X as a relationship between Y and Z. In this case, both Y and Z represent
entities.

7. If the English sentence has the form “The X of Y is Z” and if Z is not a proper
noun, we may treat X as an attribute of Y. In this case, Y represents an entity (or a
group of entities), and Z represents a value.

It is easy to see that Rules 1–4 and 8–9 are very similar to Abbott’s rules. They just
target at another representation form as Abbott’s rules (ER-diagrams instead of Ada
programs). Rules 5–7 create additional relations by analyzing firm expression patterns.

Saeki et al. [16] designed a tool aimed at automation of the approaches introduced
above. They extract nouns and verbs from the text and build a noun table and a verb
table. Then they select actions and action relations from the verb table. Although they
aim at constructing an object-oriented model from a specification text, they do not per-
form any concept classification, which would yield a class hierarchy, but produce a flat
model. An approach that performs not only concept extraction, but also classification,
is presented below.

Ontology Building Technique: Syntactic text analysis techniques can be used to build
an application domain ontology as well. In computer science, an ontology consists of
a concept hierarchy, also called taxonomy, augmented with some more general, other
than “is-a”, relations. A taxonomy, in turn, consists of a term list and the “is-a”–relation,
also called specialization or sub-typing. Thus, extraction of a domain-specific ontology
consists of three basic steps:

1. term extraction
2. term clustering and taxonomy building, finding “is-a” relations
3. finding associations between extracted terms

170 L. Kof

These steps are explained below in detail.

Extraction of terms from requirements documents: To extract terms, each sentence
is parsed and the resulting parse tree is decomposed. Noun phrases that are related
to the verb of the sentence are extracted as domain concepts. For example, from the
sentence “The control unit sends an alarm message in a critical situation” “send”
is extracted as the main verb, “control unit” as the subject and “alarm message” as
the direct object.

Term clustering: The second step clusters related concepts. Two concepts are consid-
ered as related and put into the same cluster if they occur in the same grammatical
context. I.e., two terms are related in the following cases:

– They are subjects of the same verb.
– They are direct objects of the same verb.
– They are indirect objects of the same verb and are used with the same preposi-

tion.

For example, if the document contains two sentences like

1. “The control unit sends an alarm message in a critical situation”
2. “The measurement unit sends measurements results every 5 seconds”,

the concepts “control unit” and “measurement unit” are considered as related, as
well as “alarm message” and “measurements results”.

Taxonomy building: Concept clusters constructed in the previous step are used to
build the taxonomy by joining overlapping concept clusters. The emerging larger
clusters represent more general concepts. For example, the two clusters “{alarm
message, measurements results}” and “{control message, measurements results}”
are joined into the larger cluster

{alarm message, control message, measurements results}

because they share the common concept “measurement results”. The new joint clus-
ter represents the more general concept of possible messages.

This step also aids in identifying synonyms2 because synonyms are often con-
tained in the same cluster. For example, if a cluster contains both “signal” and
“message”, the domain analyst performing the ontology construction can identify
them as synonyms.

In the original approach [17], the tool ASIUM [18] was used to cluster terms
and build a taxonomy. Other clustering approaches are possible as well [19].

Associations/relations mining: There is a potential association between two concepts
if they occur in the same sentence. Each potential association then has to be vali-
dated by the requirements engineer before being recorded as an association between
concepts.

Note, that validation of the association proposed by the association mining tool
automatically implies validation of the requirements document. If the tool suggests
an association that cannot be valid, for example a pair containing completely unre-
lated concepts, then we have detected an evidence that the requirements document

2 Different names for the same concept.

On the Identification of Goals in Stakeholders’ Dialogs 171

contains some inconsistent noise that must be eliminated. The tool KAON [20]
can be used for this step. Maedche and Staab [21] give an in–depth treatment of
association mining.

More details on the ontology extraction approach sketched above can be found in [17].

5.3 Interpreting Sentences: Semantic Approaches to Text Analysis

Semantic approaches are the most demanding on the formulation. In return, they ex-
tract the most information from text. As the name says, these approaches build a se-
mantic representation as their results. Each of these approaches uses one of two kinds
of semantic representations: discourse representation structures or mapping of verbs to
predicates with their arguments.

Discourse representation structure (DRS) is a kind of first order predicate logic with
explicit introduction of variables and definitions of variable scopes and accessibility.
An example DRS, taken from Blackburn et al. [22], is shown in Figure 1. This DRS
consists of one large scope box with two subordinate scope boxes. Each of the subor-
dinate scopes contains some object references, represented by the variables x and y,
and statements about these objects. For example, the left box introduces the object x
and states woman(x). The right box introduces a new object y and states boxer(y) and
loves(x, y). The whole DRS represents the sentence “Every woman loves a boxer” and
is equivalent to the formula

∀x.woman(x) ⇒ ∃y.boxer(y) ∧ loves(x, y). (1)

(See the technical report by Blackburn et al. [22] for the translation rules between DRSs
and formulae and for other details.)

boxer(y)
loves(x, y)

woman(x)

x y

Fig. 1. Discourse Representation Structure (DRS) for “Every woman loves a boxer”

To compute the semantics-DRS, Blackburn et al. [22] define a calculus for such
structures. This calculus defines operations on DRSs, like merging, conjunction, nega-
tion, and so on. In order to translate a sentence to the representing DRS, a DRS–λ–
expression3 is associated with every word, all the word–λ–expressions are chained to
one sentence–λ–expression and then this large λ–expression is evaluated according to
the reduction rules of the λ–calculus.

The following example shows semantics calculation with ordinary first order formu-
lae, but a very similar calculation can be done with discourse representation structures.

3 For an introduction to λ–calculus see, for example, Baader and Nipkow [23].

172 L. Kof

The example uses ordinary first order formulae just not to over-complicate the matters.
First of all, λ–expressions are introduced for every word class:

Proper names: Alice = λP.(P Alice)
Common names: woman = λy.(woman(y))
Intransitive verbs: walks = λx.(walk(x))
Transitive verbs: loves = λX.(λz.(X (λx.love(z , x))))
“every”: every = λP.(λQ.(∀x.((P x) → (Q x))))
“a”: a = λP.(λQ.(∃y.((P y) ∧ (Q y))))

(2)

It is possible to calculate the sentence semantics just by replacing every word with
its λ–expression and performing standard reductions defined in the λ–calculus. For
example, the semantics of “Alice loves a man” is calculated as follows:

Alice loves a man =
= λAlice (λloves (λa (λman)))
= λAlice (λloves ((λP.(λQ.(∃y.((P y) ∧ (Q y))))) (λy.(man(y)))))
= λAlice (λloves (λQ.(∃y.(((λy.man(y)) y) ∧ (Q y)))))
= λAlice (λloves (λQ.(∃y.((man(y)) ∧ (Q y)))))
= λAlice ((λX.(λz.(X (λx.love(z , x))))) (λQ.(∃y.((man(y)) ∧ (Q y)))))
= λAlice (λz.((λQ.(∃y.((man(y)) ∧ (Q y)))) (λx.love(z, x))))
= λAlice (λz.(∃y.(man(y) ∧ (λx.love(z, x)) y)))
= λAlice (λz.(∃y.(man(y) ∧ love(z, y))))
= (λP.(P Alice)) (λz.(∃y.(man(y) ∧ love(z, y))))
= (λz.(∃y.(man(y) ∧ love(z, y)))) Alice

= ∃y.(man(y) ∧ love(Alice, y))

(3)

As the above example shows, the semantics calculation is quite complicated. Fur-
thermore, introduction of additional words in the sentence would add additional λ–
expressions to the computation and would disturb it. This makes approaches of this
kind extremely fragile. They are applicable to only restricted specification languages
with fixed grammars.

To make this approach applicable to document analysis, it is necessary to restrict
the natural language. Fuchs et al. [24], for example, introduced a controlled specifica-
tion language (ACE, Attempto Controlled English). The language is restricted in the
following way:

Vocabulary: The vocabulary of ACE comprises
– predefined function words, e.g. determiners, conjunctions, preposi-

tions
– user-defined, domain-specific content words, e.g. nouns, verbs, adjec-

tives, adverbs
Sentences: There are

– simple sentences,

On the Identification of Goals in Stakeholders’ Dialogs 173

– composite sentences,
– query sentences.

Simple sentences have the form subject + verb + complements + adjuncts .

Firm sentence structure and the necessity to explicitly define the vocabulary in ad-
vance restrict the applicability of ACE and other λ–calculus based approaches to real
requirements documents.

The other group of semantic approaches uses verb subcategorization frames for se-
mantics representation. A verb subcategorization frame is a verb with its arguments,
namely its subject and its objects. For example, for the verb “send”, possible arguments
are: sender, receiver, sent object. When interpreting the sentence “Component X sends
message Y to component Z”, in the semantic representation “component X” becomes
the sender, “component Z” the receiver and “message Y” the sent object.

This idea is used by Hoppenbrouwers et al. [25] to identify domain concepts and
relations between them. Hoppenbrouwers et al. define a set of roles, or semantic tags,
like agent , action , patient etc. The analyst marks the relevant words with these tags.
For example, the sentence “Component X sends message Y to component Z” can be
manually tagged as

(Component X)/agent sends/action (message Y)/patient to
(component Z)/other .

Sentences marked in such a way are used to find agents , actions , and patients .
Ambriola and Gervasi [26] go further than Hoppenbrouwers et al. and build a se-

mantic tree representation of a sentence. To build the semantic representation, they start
with a glossary. Each term in the glossary is manually furnished with an associated list
of tags. These tags are then used to automatically mark every word of a sentence. For
example, the sentence

The terminal sends the password to the server can be canonized as

terminal/IN /OUT sends password/INF to server/IN /OUT/ELAB

The applied tags are domain-specific.
After the tagging, a set of transformation rules is applied to marked sentences, trans-

lating the tagged sentence to a semantic tree. Figure 2, taken from Ambriola and Ger-
vasi [26], shows an example semantic tree. It shows the representation of the sentence

When the server receives from the terminal the password, the server stores the
signature of the password in the system log.

This tree shows dependencies between actions, namely that the left subtree depends
on the right one. Furthermore, the tree shows the semantics of every action. This rich
representation allows for extraction of abstract state machines, ER diagrams and other
formalisms [27,28].

The drawback of this approach is obvious: the approach is able to analyze only sen-
tences that fit into the predefined transformation rules. The transformation rules are
defined manually and it is almost impossible to cater for all the potential constructions
that can occur in a real requirements document.

174 L. Kof

Fig. 2. Semantic tree according to Ambriola and Gervasi [26]

The above approach was further developed and improved by Gervasi and
Zowghi [29]. In the improved approach the tool became interactive: for the words not
contained in the user’s glossary, the user has to specify first, to which category the new
word belongs, for example “sender”, “receiver”, “message”, . . . Then, when the cate-
gory of every word is known, the tool translates every sentence to a first-order-logic
formula, based on a parse tree like the tree shown in Figure 2. Then, a theorem prover is
applied to check whether the set of formulae obtained for the whole text is satisfiable,
i.e., contradiction-free.

Rolland and Ben Achour [30] apply the idea of case frames, which is very simi-
lar to the approach by Ambriola and Gervasi, introduced above, to whole sequences
of sentences to build the semantics of a use case description. As in the approaches by
Ambriola and Gervasi and by Gervasi and Zowghi, only firm expression patterns are
supported. They also define a set of expressions for temporal relations between individ-
ual sentences.

Although interesting in itself, semantics representation is not necessarily the final
goal of document analysis. Vadeira and Meziane [31] use semantic text analysis and
formulae representation to produce a VDM [32] model. They start with a set of logical
formulae and translate them to an ER model first. To build the ER model, they assume
that the predicates that build up the formulae are the relationships and predicate argu-
ments are the entities. Then they use a set of heuristics to determine multiplicity of the
relations in the basis of formulae. The final step in their approach is the translation of
the ER-diagram to the formal specification language VDM.

Although the idea of semantics analysis is very promising for the step from a require-
ments document to a system model, the approaches are not really mature yet. They are
applicable solely to sentences with restricted grammar. What is lacking is a semantic
broad-domain parser, putting no restrictions on allowed expression forms and able to
cope with sentences that are not completely grammatically correct. It is an open ques-
tion whether such a parser will ever become possible.

5.4 Logic to Capture Pragmatics

To capture pragmatics, it is necessary to understand links between sentences. To model
these links, Asher and Lascarides [33] introduce seven rhetorical relations: narration,

On the Identification of Goals in Stakeholders’ Dialogs 175

Table 3. Rhetorical relations according to Asher and Lascarides [33]

Narration Max fell. John helped him up.
Elaboration He had a great meal. He ate salmon. He devoured lots of cheese.
Explanation Max fell. John pushed him.
Result Max switched off the light. He drew the blinds. The room became dark.
Background John moved from Brixton to St. John’s Wood. The rent was less expensive.
Contrast -Max owns several classic cars.

-No, he does not.
-He owns two 1967 Alpha spiders.

Parallel John said that Mary cried. Sam did too.

elaboration, explanation, result, background, contrast, parallel. Table 3 shows their ex-
amples for each rhetorical relation. For every relation, they introduce logical operations
combining DRS representations for every sentence, of the type described in Section 5.3,
to a DRS representation of the discourse.

The “contrast” relation may be especially useful in the context of goal identification.
As stated in Section 3, negation of the problems with the existing system is a poten-
tial source of the goals for the system to be built. The “contrast” relation potentially
identifies problems. For example, in the dialogue excerpt shown in Table 1, there is a
“contrast” relation between the phrase “Technologies that could help might work well
in a lab. . . ” and the previous statement by the FAA representative. The negation of the
problem, namely “Technologies that could help should work not only in the lab”, iden-
tifies the goal. Unfortunately, automated recognition of the relation types is not possible
at the moment.

5.5 Applicability of Different Kinds of Analysis to Goal Identification

The discussion in Sections 5.1– 5.4 makes clear that goal identification takes place
on the lexical and pragmatic analysis levels. This discussion makes also obvious that
the higher the analysis level, the lower the precision, and automation, as sketched in

lexical syntactic semantic pragmatic

analysis
level

poor automationgood automation

level
precision and automation

Fig. 3. Precision of different analysis levels

176 L. Kof

Figure 3. For lexical and syntactic analysis, 100% recall is possible, in the sense that
there exist tools that assign a POS tag to every word and assign a parse tree to every
sentence, even if the sentence is not completely grammatically correct. If we restrict lex-
ical analysis to search for certain keywords, 100% precision is possible, with a grep-
like tool. For syntactic analysis, there are taggers available with the precision of about
97% [12], and parsers with the precision of about 80% [34]. Beyond syntactic analysis,
we either have to abandon the idea to handle broad domain language and trade recall for
precision, like in Attempto Controlled English [24] and similar languages, or fall back
to manual analysis. The situation gets even worse if we try to analyze pragmatics. Due
to these problems it is not very likely that full-fledged goal identification be automated
in the near future, or even in the far.

6 Case Study, Goal Identification by Means of Natural Language
Processing

Section 4 shows how to identify goals in a text by close inspection of the text. Now
we want to systematize the inspection procedure. To systematize the analysis, we apply
two observations to every paragraph, motivated by the goal identification rules by van
Lamsweerde (cf. Section 3):

– Phrases like “have to” and “in order to” may directly show a goal.
– If the first sentence of a paragraph does not contain any of the above phrases, the

first sentence states the reason why the previous paragraph is problematic. In this
case, the negation of this sentence shows the stakeholder’s goal.

6.1 Evaluation of the Rule Application

Table 4 shows the results of the application of the above rules to the case study. The
application was performed manually by adhering to the rules as strictly as possible. This
means that in some cases not the first sentence of the paragraph but the first meaningful
one was taken into consideration. For example, statements like “come on”, “well. . . ”,
“we can deal with it” were ignored, as they do not contribute to the identification of
the goals. For this reason, Table 4 sometimes lists other than the first sentence of the
paragraph.

It is important to emphasize that the negations listed in Table 4 were not constructed
by purely textual deletion or addition of “not” at some position in the sentence. Further-
more, negations had to be generalized. For example, “It’s not easy to move 2 million
passengers. . . ”, statement from paragraph 4, was negated to “It should be easy to move
2 million passengers. . . ” and then generalized to “The screening system has to handle
2 million passengers daily”. In a similar way, “On each dollar that a potential attacker
spends on his plot we had to spend $1000 to protect” was negated to “On each dollar
that a potential attacker spends on his plot we should spend much less than $1000 to
protect”, and generalized to “The screening procedure should remain affordable”. The
negation performed for the second sentence, resulting in “On each dollar . . . we should
spend much less than $1000 to protect”, cannot be performed on the semantic level, let

On the Identification of Goals in Stakeholders’ Dialogs 177

Table 4. Application of the hypothesis to the case study

Sentence State of the art/Goal Evaluation
1 We have to ban on airplane passen-

gers taking liquids on board in order to
increase security following the recent
foiled United Kingdom terrorist plot.

State of the art: we do not ban passen-
gers taking liquids, terrorist plot like in
the UK is possible. Goals: ban passen-
gers taking liquids, increase security

2 Technologies that could help might
work well in a lab, but when you use it
dozens of times daily screening every-
thing from squeeze cheese to Channel
No. 5 [sic] you get False Alarms ...

Goals: technologies should work not
only in the lab, and the proportion of
false alarms in daily screening should
not lie above some threshold

Goal correctly
identified

3 Generating false positives helped us
stay alive; maybe that wasn’t a lion that
your ancestor saw, but it was better to
be safe than sorry.

No goal identifiable. However, this
sentence is not useless: It states that the
threshold mentioned above is not nec-
essarily zero.

—

4 It’s not easy to move 2 million passen-
gers through U.S. airports daily.

Goal: the screening system has to han-
dle 2 million passengers daily

Goal correctly
identified

5 We can deal with it. What if you guys
take frequent breaks?

No goal identifiable —

6 Sounds good though we do take breaks
and are getting inspected.

No goal identifiable —

7 We have yet to take a significant pro-
active step in preventing another attack
everything to this point has been reac-
tive.

State of the art: We do not take pro-
active steps. Goal: We have yet to take
pro-active steps

Goal correctly
identified

8 On each dollar that a potential attacker
spends on his plot we had to spend
$1000 to protect.

Goal: we should not spend too much
on the screening procedure, it should
remain affordable

Goal correctly
identified

9 We need to think ahead. For instance,
nobody needs a metal object to bring
down an airliner, not even explosives.

Goal: identify other types of objects to
be banned

Goal correctly
identified

10 Airlines need to take the lead on avia-
tion security.

Goal: Airlines need to take the lead on
aviation security, not FAA.

Goal correctly
identified

11 Sir, a lot of airlines are not doing well
and are on the Government assistance.

Goal: Airlines should not be responsi-
ble for additional cost-intensive tasks.

Goal correctly
identified

12 I think that enforcing consistency in
our regulations and especially in their
application will be a good thing to do.

State of the art: regulations are in-
consistent Goal: regulations should be
consistent.

Goal correctly
identified

13 Ok, we had very productive discussion No goal identifiable —

alone the syntactic and lexical ones. A negation on the semantic level would result in
“We should not spend $1000 to protect”. This negation is correct too, but it still allows
unintended interpretations like “We should spend more than $1000 to protect” or “We
should spend $999 to protect”. Building sensible negation on pragmatic level, like “We
should spend much less than $1000”, requires knowledge going beyond pure sentence
semantics. This knowledge is absolutely obvious for humans and extremely difficult to
capture in AI applications.

178 L. Kof

It is easy to see that Table 4 contains all the goals identified by ad-hoc analysis in
Section 4. However, it is necessary to bear in mind that the case study was rather small
and that both analysis runs, ad-hoc and systematic, were performed by the same person,
which makes the results potentially biased. Thus, to properly evaluate the rules for goal
identification, a controlled experiment is necessary. In the experiment, one group of
people would have to identify goals using the introduced rules, and the other group
would have to identify the goals ad-hoc.

6.2 Possible Implementation

To implement the introduced procedure for goal identification, it is necessary to solve
at least two problems:

– It is necessary to define what a meaningful sentence is, in order to analyze the first
meaningful sentence of every paragraph.

– Negation is not always possible by simple deletion or addition of “not”. Further-
more, negated sentences have to be generalized. Generalization can be seen also
as the application of the “WHY”-question to the negation. (I.e., we would perma-
nently ask the question “why is it really a problem?”)

The first problem is relatively simple from the point of view of computational lin-
guistics: We could eliminate sentences without grammatical subject, like “come on”
and “well. . . ”, as well as questions, like “What do you suggest?” in the case study doc-
ument. This would work for most paragraphs of the considered case study, but still not
for all. To achieve high precision, manual post-processing would be necessary even for
this step.

The second problem, the negation, is much more difficult. Purely syntactic negation
is obviously insufficient, as we would negate “it’s not easy to move 2 million passen-
gers. . . ” to “it’s easy to move 2 million passengers. . . ”, that does not really state the
goal “it should be easy to move 2 million passengers. . . ”. To go beyond pure syntactic
analysis, we could represent the sentence to be negated as a discourse representation

Fig. 4. DRS for the sentence “it’s not easy to move 2 million passengers”

On the Identification of Goals in Stakeholders’ Dialogs 179

structure (DRS) (cf. Section 5.3 and [35,36]). For the sentence “‘it’s not easy to move
2 million passengers. . . ” this would result in the representation shown in Figure 4. This
representation is created by the DRS tool Boxer available as a component of the C&C
tool suite [37]. Then we can take a negation on the DRS level. This would be equivalent
to representation of the sentence as a formula in first order logic and then taking a nega-
tion on the logical level. However, this results, again, in removing the negation from
the second box (“¬”-sign) and, therefore, in the sentence “it’s easy to move 2 million
passengers. . . ”.

Thus, even semantic negation is not sufficient to obtain the goals and we have to
move to negation on the pragmatics level. Negation on the pragmatics level would in-
clude profound knowledge of real world and knowledge of motivation for certain state-
ments. Then we can get, for example, from “On each dollar that a potential attacker
spends on his plot we had to spend $1000 to protect” to “On each dollar that a poten-
tial attacker spends on his plot we should spend much less than $1000 to protect”. On
this level we could also implement generalization. For example, in the case study we
had to generalize “On each dollar that a potential attacker spends on his plot we should
spend much less than $1000 to protect” to “The screening procedure should remain af-
fordable”. Unfortunately, this is far beyond the capabilities of state-of-the-art linguistic
tools.

7 Summary

In this paper a method for identification of stakeholders’ goals by analyzing stakehold-
ers’ dialogs was introduced. This method is based on two key assumptions:

– A sentence containing certain keywords directly represents a goal.
– Otherwise, if a sentence is the first meaningful sentence of its paragraph, the nega-

tion of this sentence represents a goal.

The second rule used in this paper, the negation rule, can also be seen as an applica-
tion of the WHY-rule of Section 3 to the dialog: We are just asking the question, why
a particular statement was made. One of the reasons to start a new dialog segment is
a stakeholder’s disagreement with the last statement of his opponent. In this case, the
negation of the first statement of the new dialog segment shows the reason for the dis-
agreement, which is some goal of the stakeholder.

Explicit goal identification is important for several reasons. Goals serve to achieve
requirements completeness and pertinence, managing requirements conflicts, etc. [3].
The presented approach is especially suitable to manage requirements conflicts when
negotiating requirements: In the Win-Win negotiation approach [2], requirements con-
flicts are resolved in such a way that the goals of every stakeholder remain satisfied. In
the case of goal conflicts, such a resolution is impossible. Thus, identification of goals
and goal conflicts, as in the presented paper, contributes to identification of potential
problems early in the development process.

Acknowledgments. I am very grateful to Daniel Berry and two anonymous reviewers.
They helped a lot to improve the paper.

180 L. Kof

References

1. Luqi, Kordon, F.: Advances in Requirements Engineering: Bridging the Gap between Stake-
holders’ Needs and Formal Designs. In: Paech, B., Martell, C. (eds.) Monterey Workshop
2007. LNCS, vol. 5320, pp. 15–24. Springer, Heidelberg (2008)

2. Grünbacher, P., Boehm, B.W., Briggs, R.O.: EasyWinWin: A groupware-supported method-
ology for requirements negotiation,
http://sunset.usc.edu/research/WINWIN/EasyWinWin/index.html

3. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Proceed-
ings of the 5th IEEE International Symposium on Requirements Engineering, pp. 249–263.
IEEE Computer Society, Los Alamitos (2001)

4. Berry, D.: Natural language and requirements engineering - nu? In: International Workshop
on Requirements Engineering, Imperial College, London, April 25 (2001),
http://www.ifi.unizh.ch/groups/req/IWRE/papers&presentations/
Berry.pdf

5. Goldin, L., Berry, D.M.: AbstFinder, a prototype natural language text abstraction finder for
use in requirements elicitation. Automated Software Eng 4, 375–412 (1997)

6. Maarek, Y.S., Berry, D.M.: The use of lexical affinities in requirements extraction. In: Pro-
ceedings of the 5th international workshop on Software specification and design, pp. 196–
202. ACM Press, New York (1989)

7. Lecoeuche, R.: Finding comparatively important concepts between texts. In: The Fifteenth
IEEE International Conference on Automated Software Engineering, Grenoble, France, pp.
55–60. IEEE Computer Society Press, Los Alamitos (2000)

8. Abrial, J.R., Börger, E., Langmaack, H.: The steam boiler case study: Competition of formal
program specification and development methods. In: Abrial, J.R., Borger, E., Langmaack, H.
(eds.) Dagstuhl Seminar 1995. LNCS, vol. 1165, pp. 1–12. Springer, Heidelberg (1996)

9. Sawyer, P., Rayson, P., Cosh, K.: Shallow knowledge as an aid to deep understanding in early
phase requirements engineering. IEEE Trans. Softw. Eng. 31, 969–981 (2005)

10. Abbott, R.J.: Program design by informal English descriptions. Communications of the
ACM 26, 882–894 (1983)

11. Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. In Brill, E., Church,
K., eds.: Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing (Somerset, New Jersey), pp. 133–142. Association for Computational Linguistics,
Morristown, NJ, USA (1996)

12. Curran, J.R., Clark, S., Vadas, D.: Multi-tagging for lexicalized-grammar parsing. In: 21st
International Conference on Computational Linguistics and 44th Annual Meeting of the As-
sociation for Computational Linguistics, Morristown, NJ, USA, 17-21 July, pp. 697–704
(2006)

13. Language-Independent Named Entity Recognition,
http://www.cnts.ua.ac.be/conll2003/ner/

14. Witte, R., Li, Q., Zhang, Y., Rilling, J.: Ontological text mining of software documents. In:
Kedad, Z., Lammari, N., Métais, E., Meziane, F., Rezgui, Y. (eds.) NLDB 2007. LNCS,
vol. 4592, pp. 168–180. Springer, Heidelberg (2007)

15. Chen, P.: English sentence structure and entity-relationship diagram. Information Sciences 1,
127–149 (1983)

16. Saeki, M., Horai, H., Enomoto, H.: Software development process from natural language
specification. In: Proceedings of the 11th international conference on Software engineering,
pp. 64–73. ACM Press, New York (1989)

17. Kof, L.: Text Analysis for Requirements Engineering. Ph.D thesis, Technische Universität
München (2005)

http://sunset.usc.edu/research/WINWIN/EasyWinWin/index.html
http://www.ifi.unizh.ch/groups/req/IWRE/papers&presentations/Berry.pdf
http://www.ifi.unizh.ch/groups/req/IWRE/papers&presentations/Berry.pdf
http://www.cnts.ua.ac.be/conll2003/ner/

On the Identification of Goals in Stakeholders’ Dialogs 181

18. Faure, D., Nédellec, C.: ASIUM: Learning subcategorization frames and restrictions of se-
lection. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398. Springer, Hei-
delberg (1998)

19. Nenadić, G., Spasić, I., Ananiadou, S.: Automatic discovery of term similarities using pattern
mining. In: Proceedings of CompuTerm 2002, pp. 43–49. Association for Computational
Linguistics, Morristown (2002)

20. Welcome to KAON, http://kaon.semanticweb.org/
21. Maedche, A., Staab, S.: Discovering conceptual relations from text. In: Horn, W. (ed.) ECAI

2000. Proceedings of the 14th European Conference on Artificial Intelligence, pp. 321–325.
IOS Press, Amsterdam (2000)

22. Blackburn, P., Bos, J., Kohlhase, M., de Nivelle, H.: Inference and computational semantics.
CLAUS-Report 106, Universität des Saarlandes, Saarbrücken (1998)

23. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cam-
bridge (1999)

24. Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto Controlled English (ACE) language
manual, version 3.0. Technical Report 99.03, Department of Computer Science, University
of Zurich (1999),
http://www.ifi.unizh.ch/attempto/publications/papers/
ace3 manual.pdf

25. Hoppenbrouwers, J., van der Vos, B., Hoppenbrouwers, S.: NL structures and conceptual
modelling: grammalizing for KISS. Data Knowl. Eng. 23, 79–92 (1997)

26. Ambriola, V., Gervasi, V.: Experiences with domain-based parsing of natural language re-
quirements. In: Fliedl, G., Mayr, H.C. (eds.) Proc. of the 4th International Conference on
Applications of Natural Language to Information Systems. OCG Schriftenreihe (Lecture
Notes), vol. 129, pp. 145–148. Oesterreichische Computer Gesellschaft (1999)

27. Ambriola, V., Gervasi, V.: The Circe approach to the systematic analysis of NL requirements.
Technical Report TR-03-05, University of Pisa, Dipartimento di Informatica (2003)

28. Gervasi, V.: Synthesizing ASMs from natural language requirements. In: Proc. of the 8th EU-
ROCAST Workshop on Abstract State Machines, pp. 212–215. Universidad de Las Palmas
(2001)

29. Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language requirements.
ACM Trans. Softw. Eng. Methodol. 14, 277–330 (2005)

30. Rolland, C., Ben Achour, C.: Guiding the construction of textual use case specifications.
Data & Knowledge Engineering Journal 25, 125–160 (1998)

31. Vadera, S., Meziane, F.: From English to formal specifications. The Computer Journal 37,
753–763 (1994)

32. Jones, C.B.: Systematic Software Development using VDM. Prentice-Hall, Upper Saddle
River (1990)

33. Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press, Cambridge
(2003)

34. Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with ccg and log-linear
models. Comput. Linguist. 33, 493–552 (2007)

35. Bos, J., Clark, S., Steedman, M., Curran, J.R., Hockenmaier, J.: Wide-coverage semantic
representations from a CCG parser. In: COLING 2004: Proceedings of the 20th international
conference on Computational Linguistics, pp. 1240–1246. Association for Computational
Linguistics, Morristown (2004)

36. Bos, J.: Towards wide-coverage semantic interpretation. In: Proceedings of the 6th Interna-
tional Workshop on Computational Semantics (IWCS 6), pp. 42–53 (2005)

37. C&C Tools, http://svn.ask.it.usyd.edu.au/trac/candc

http://kaon.semanticweb.org/
http://www.ifi.unizh.ch/attempto/publications/papers/ace3_manual.pdf
http://www.ifi.unizh.ch/attempto/publications/papers/ace3_manual.pdf
http://svn.ask.it.usyd.edu.au/trac/candc

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 182–195, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Text Classification and Machine Learning Support for
Requirements Analysis Using Blogs

Douglas S. Lange

Space and Naval Warfare Systems Center
San Diego, CA 92152

doug.lange@navy.mil

Abstract. Text classification and machine learning technologies are being in-
vestigated for use in supporting knowledge management requirements in mili-
tary command centers. Military communities of interest are beginning to use
blogs and related tools for information sharing, providing a comparable envi-
ronment to the use of blogs for system requirement discussions. This paper
describes the work in the area being performed under the Personalized Assistant
that Learns (PAL) program sponsored by the Defense Advanced Research Pro-
jects Agency. Comparisons are then made to how the technology could provide
similar capabilities for a requirements analysis environment. An additional dis-
cussion of how the task learning capabilities from PAL could also benefit
requirements analysis in a rapid prototyping process is provided.

1 Introduction

The United States Military has adopted several network based communications
mechanisms. During the second Gulf War, chat was an important method of commu-
nications, reducing the need for voice circuits. E-mail protocols have been used heav-
ily since the early ‘90s for longer more structured messages in the place of old
teletype methods. Now, blogs and wikis have come into use for knowledge sharing
purposes [1].

The U.S. Strategic Command has developed and uses heavily a capability that can
best be described as a hybrid of wikis and blogs. The Strategic Knowledge Integration
Web (SKIWeb) allows users to post information about key events, and allows other
users to add comments and edit the information. Events can be linked to other events,
and lists of events are used to provide key information to various communities of
interest [2]. While SKIWeb is structured differently than most blogging capabilities,
the information within it can, with small transformations, be represented as being
structured exactly like a collection of blogs.

With sponsorship by the Defense Advanced Research Projects Agency (DARPA),
the Space and Naval Warfare Systems Center (SSC) along with SRI International and
Northrop-Grumman is working to transition machine learning technology into both
SKIWeb and a blog/Really Simple Syndication (RSS) capability being developed for
U.S. Navy command and control. It is envisioned that the learning technology can not
only aid the bloggers, reducing the labor costs of publishing information, but can also

 Text Classification and Machine Learning Support for Requirements Analysis 183

extract information for other purposes. It is this second feature that is most closely
aligned with the goal of extracting software requirements from blogs.

2 PAL Blogs

Machine learning from the DARPA Personalized Assistant that Learns (PAL) pro-
gram is being used in several ways in conjunction with blogs. These approaches will
help both those who publish information on blogs and those who subscribe to receive
the information over Really Simple Syndication (RSS) feeds. Figure 1 depicts an
envisioned Navy Composeable FORCEnet (CFn) PAL Blog capability. The two sides
of the picture depict the publishing activities (left) and the subscription activities
(right). Sections 2.1 and 2.2 describe how machine learning contributes to both sides.
The figure shows the situation envisioned for CFn use.

Fig. 1. PAL Blog

On the left side, each information publisher would have their own “fixed” blog.
Someone managing parts orders for aircraft would publish information above and
beyond what fixed databases allow. On the other hand, when a crisis occurs, multiple
users may contribute to a blog about a particular critical issue. These blogs would be
utilized during the life of the crisis. The goal of adding a learning capability to sup-
port publishing is to help authors find additional information held that relates to posts
already made in their blogs. If an author posts information about wing parts for a
particular jet, were there emails, received blog articles, documents, etc. that related to
the posts. Perhaps the automated assistant can help the author publish more relevant
information faster.

The right side of the diagram depicts an RSS Aggregator subscribing to a series of
blogs that it has learned may contain information relevant to the user. Additional

184 D.S. Lange

information is extracted from the display as configured by the user and documents
that fall within the relevance criteria for the user. In Figure 1, items relating to a
document posted on the map display are found by comparing the text within the
document and the topic models learned concerning the user’s interests and needs.

For SKIWeb, SKIPAL (the SKIWeb version of PAL) provides similar benefits.
Using topic modeling [9], SKIPAL learns to recognize events of interest to each user
and provides a recommended reading list. Text classifiers are taught to recognize
particular topics of interest and SKIPAL will identify the people most likely con-
nected to the events and other events that are most closely related. SKIPAL will also
learn to gather additional information about an event and learn the tasks that must be
accomplished when particular kinds of events occur.

A simple illustration of how SKIPAL communicates with SKIWeb is in Figure 2
below.

Fig. 2. SKIPAL - SKIWeb Architecture

Users enter through the SKIPAL Recommends page as shown in Figure 3 below.
Selecting an event brings up a SKIWeb page that has been supplemented by SKI-

PAL. SKIPAL shows a list of related people, related events, indicates if the event was
recognized by a trained classifier, and provides amplifying links and tasks. A sample
is shown in Figure 4.

2.1 Learning on the Publishing Side

Two technologies are applicable to the publishing side in the CFn capability. The first
is statistical text classification. Statistical text classifiers group documents based on
learning the probabilities of documents within a category containing particular words
[10]. Various learning techniques can be applied to text to help map the topics found
in a corpus. Various algorithms can be used [3] and the selection can depend on the
characteristics of the text, and the mode by which the classifier is to be trained and
used. Experience with naïve Bayesian classifiers is discussed in section 4.1.

 Text Classification and Machine Learning Support for Requirements Analysis 185

Fig. 3. SKIPAL Recommends

Fig. 4. SKIPAL Supplemented Event

Text classifiers occupy the Learning module in Fig. 1. By subscribing to the blog of
a user, text classifiers can determine what topics the user writes about. If a user fre-
quently reports the status of aircraft in his/her blog, a model of the writer’s interests
can reflect that. Further, through the use of intelligent search and indexing that em-
ploys the same classification capabilities, PAL may find new email, documents, chat,

186 D.S. Lange

or other information sources that have new information on aircraft status and suggest to
the user that the information be added to the blog. In Section 3, it will be argued that
this capability can be useful in defining system or software requirements from blogs.

A second technology applicable for the PAL Blog provides task learning [4]. An-
other approach to helping the user publish is for PAL to learn and generalize common
tasks for the user. If the user frequently gets email about the status of aircraft, he or
she may typically choose to do additional research before publishing the results. Per-
haps a database of parts needs to be queried and a decision aid to calculate delivery
times must be run. The PAL task learning technology allows a user to teach PAL that
when such email arrives in the future, PAL is to go through those steps and report the
results in a particular manner on the blog, thereby relieving the user of the need to
perform the task. PAL. This technology is not directly applicable to an effort to use
natural language tools such as blogs as requirements sources, but task learning itself
can be a means to requirements gathering by using the task models that are generated
as representative of the capabilities required.

2.2 Learning on the Subscription Side

On the subscription side, the goal of learning is to model the topics being published
and in turn used by the reader in order to predict what information the user would like
to see and find related material. In the PAL Blog, learning is being used to observe
the reading habits of users and suggest RSS feeds to subscribe to, and even which
entries from a feed to treat with higher priority. This will be done with text classifica-
tion methods, mapping of topics, and even social networking clues such as which
bloggers provide more authoritative information [9]. The features here are nearly
identical to those being fielded in SKIPAL.

In SKIPAL, events are recommended to users based on learning what types of
events the user authors, comments on, and reads. Explicit feedback is utilized as well.
The user can direct SKIPAL to provide more or fewer of a particular kind of event.
We are experimenting with using text classifiers and a more sophisticated topic mod-
eler for this purpose. The topic modeling software (iLink) is discussed in the next
section. In section 4, results from recent experiments will be provided in order to
discuss how well the tools are able to accomplish these goals.

2.3 Models of Expertise

The third technique being applied to blogging activities is social network analysis.
The iLink [10] capability, developed by SRI International as part of the PAL program,
learns to attribute different levels of expertise on a topic to each member of a net-
work. This is based on the ability of participants to respond to questions satisfactorily,
the likelihood that other participants in the network will route messages to them and
the numbers of messages written and read on the topic. The way iLink is structured,
when a user poses a question through iLink it is distributed to those who are known to
have some expertise in the area. Recipients are able to answer the question or forward
it to others who they feel might know the answer. When answers do come, those who
have provided useful information and those who referred the question to them have
their scores raised. Those who provide poor information or cannot answer have their
scores lowered. In this way, expertise is determined by the quality of information

 Text Classification and Machine Learning Support for Requirements Analysis 187

rather than by simple claims in social network metadata. Social network analysis can
show that the real organization of an entity may be very different than what the or-
ganization chart shows. Likewise, the expertise may not reside in those who are ad-
vertised as the experts on a topic. Similar results may show that the key stakeholders
regarding particular requirements may be different than those believed.

3 Applications for Requirements Engineering

If we consider that the text of individual blogs contains information important to the
requirements of a system being developed, then the use of machine learning capabili-
ties in text classification, topic modeling, and social networking tools may provide a
means to organize the statements, record arguments for and against a capability, iden-
tify critical stakeholders, and even provide some sense of priority. In this section, we
will look at each of the activities being performed by machine learning technologies
in the SKIPAL capability and compare them to the domain of software requirements
and in particular to requirements being gathered based on blog posts.

3.1 Text Classifiers

In [7] there are only three people represented in the discussion on requirements. The
power of using blogs or other network communications tools is that the number of
people who could express an opinion or provide information can grow much larger.
Text classification can group the posts into categories useful for requirements engi-
neering. Those posts that relate to the “carrying of liquids” would get grouped
together, much like SKIWeb events about particular subjects are grouped to help
decision makers in a command find information.

Classifiers require training [10], so the method process for requirements engineer-
ing might be similar to the following:

1. Hold a limited conversation as was done in the case study, or extract a
subset of the comments made.

2. Through human analysis determine the categories represented by the posts
and label the text in preparation for using the classifier.

3. Train the classifier to recognize the categories using the labeled posts.
4. Run the remaining posts through the classifier and have the classifier do

the labeling.
5. Use the output to see if stakeholders in general held similar or dissimilar

views. In posts from outside the small initial group, if the posts were
about the same topic, were the conclusions the same?

6. Investigate posts that failed to be recognized by the classifier. These may be
sources of requirements not thought of by the initial group. Use these to start
new discussion threads that can be analyzed by repeating the process.

Statistical methods are at their best when there are large quantities of data to work
on. Classifiers would not be useful in the small case study of 3 subjects and 13 posts.
But consider how blogs would allow large portions of the stakeholders to comment on
many different issues relevant to the new development.

188 D.S. Lange

Text classification is also targeted as a technology to support the publishers of in-
formation in the PAL Blog. If each of the stakeholders involved in the discussion had
access to publisher-side learning tools, they could quickly provide amplifying infor-
mation for their opinions in their posts. An FAA official who had many emails indi-
cating the weakness of a particular process or technology, or concerns about specific
threats, may want to provide that information in the blog posts. The process for using
the technology in this way might be the following:

1. The author posts comments on a particular issue.
2. The classifier (already trained earlier...see above), recognizes the catego-

ries that the post fits into and scans the users disk and accessible network
locations for documents (letter, email, chat, etc.) that fit within the same
category.

3. The user is shown the candidate items and can choose whether to publish
them in the blog to support previous statements.

3.2 Topic Model Filtering

Which stakeholders have a particular interest in which topics? If we continue to as-
sume that one reason to use blogs or other similar technology is that we want to reach
a large community and we want in depth discussion of many topics, we probably want
to help the stakeholders filter which posts they pay attention to.

The typical approach would be to define a priori what issues we are going to dis-
cuss with each stakeholder. The machine learning approach used in SKIPAL uses a
different strategy. Everything is available to the user. SKIPAL learns based on what
the user writes, reads, bookmarks and focuses the user’s attention on the most relevant
posts. Users are still free to look at others and by doing so improve the model of the
user’s interests. This allows the stakeholders to be involved in the areas they care
most about.

The topic model further serves the requirements engineer by ensuring that those
most concerned with a topic see questions and comments posted about it. Well before
classifiers are trained and used, we can ensure that related posts are being put together
and are noticed by the right people.

3.3 Social Network Analysis and Expertise Modeling

Through social network analysis, as blog entries are analyzed for good requirement
content, judgments can be made about the quality of the input by engineers and used
to learn the level of authority that should be attributed to individual authors both
through the judgment of the engineers and by the level of agreement with those that
are already judged to be authoritative.

That we expand our discussion to include tens, hundreds, or thousands of stake-
holders, doesn’t mean that we weight all opinions equally. The iLink capability used
within SKIPAL develops a model of the expertise levels of every user on every topic.
iLink is structured to treat posts as either questions or answers, but the questions don’t
have to be in proper question form. These could be statements and responses to
statements just as easily. iLink is not recognizing the English structure of the sen-
tences, but learning to build statistical models based on the words used.

 Text Classification and Machine Learning Support for Requirements Analysis 189

In SKIPAL, a reader of an event may decide to post a question. After the user types
the question, iLink determines the people with the highest expertise level for the topic
and provides them as candidates for receiving the question. The user then chooses
which people the question should be sent to. Recipients of the question, can

• Answer the question
• Fail to answer the question
• Forward the question on to somebody they believe can answer the question.

When the question is answered, the person posting the question can rate the response.
The expertise model is updated to reflect the new information on who can answer
questions on this topic or at least knows who to go to.

Utilizing the Q&A capability of iLink might be done in the following way:

1. A requirements engineer posts a question or states an issue relevant to the
requirements being explored.

2. If we are early in the process and the model is ill-defined, the engineer can
choose from among those who would normally be selected using a priori
knowledge. In parallel, the same question could be posted to the blogs to
allow all users to notice the question.

3. If the answers come back satisfactorily, those people will have their ex-
pertise ratings increased. The users may pull others in by forwarding the
question and the model benefits from increased information.

4. Meanwhile the topic and expertise models are being built up by the posts
and reading habits of stakeholders. When we next ask a question about the
topic some new stakeholders may be suggested to the engineer.

5. When answers are returned, the engineers should judge them for the qual-
ity of the information rather than whether they agree or disagree with the
position. This will lead to developing a model of the social network that
points towards those stakeholders who can provide quality information to
future questions.

6. When the requirements engineers use the classifier to pull out and group
comments on issues, those posts by people with higher expertise values
for the topic might be given more weight. In fact, tools could be devel-
oped that would sort the comments by the expertise of the poster.

When we expand the number of stakeholders we want to reach, the use of an ex-
pertise model allows us to understand the real social network among the stakeholders
rather than just the advertised social network from organization charts. This should
lead to better requirements by surfacing information from the real experts.

3.4 Task Learning

Finally, a major capability within the PAL program, but only indirectly related to text
and blogging capabilities, is task learning. There are several mechanisms by which
PAL derived systems can learn tasks that vary in the amount of interaction required
by the user. The results of the learning produce a rich task model that describes the
actions that must be performed, conditions and events that influence the tasks, and prob-
abilistic information of the likelihood of success and duration of a particular step [5].

190 D.S. Lange

SKIPAL will use task learning in later spirals to manage tasks associated with
categories of events. SKIPAL will be taught that when an event of a particular cate-
gory is found that a certain set of tasks must be completed, that those with high levels
of expertise from the models described above need to be sought out to perform some
of them, and that SKIPAL must use what it has been taught to complete the rest. The
PAL Blog proposes to use task learning in a similar fashion. When a message (in any
form) is received by the user, a set of learned tasks are initiated that result in posts
being either automatically or semi-automatically being made to the blog.

While some related set of processes may be possible for the requirements engineer-
ing blogs described in the case study, the utility isn’t directly evident. However, tt
may be possible to look at the task learning being done in PAL as a way to manage
prototyping efforts.

If we view prototyping as shown in Figure 5 below, task learning can provide a
valuable contribution to rapid prototyping. If the user working with a learning system
can create a task that fulfills his/her needs, the resulting task model can become a
requirements specification for the step in the figure labeled “Construct production
system”. This obviously will only work for requirements that can be described within
an information system, but it may have merit nonetheless.

Fig. 5. Rapid Prototyping [From 6]

4 Results from Experiments with Blogs

During the summer of 2007, three experiments were done in analyzing text in the
SKIPAL environment. Each of these experiments related to the problem presented in
the case study [7] in ways described in Section 3.

4.1 Experiment 1 – Performance of the Classifier

In our first experiment, we trained a Naïve Bayes classifier to recognize events of
different types using archival SKIWeb data. Table 1 below provides the results from
the experiment.

 Text Classification and Machine Learning Support for Requirements Analysis 191

Table 1. Results from Classifier Experiment

In what is a fairly standard protocol, two-thirds of the events that belonged to the

categories were labeled with category names. One third was left unlabeled and the
classifier was asked to label them.

While the data in SKIWeb corresponded to discussions about events in the real
world and in military exercises for which decisions needed to be made, they represent
well the situation that could occur in requirements analysis. Using the case study [7],
categories might have been labeled breaks, screening tests, liquids, or other represen-
tative topic labels, and the classifier could have sorted them out into different discus-
sion threads. Likewise, the other category contains everything that wasn’t judged to
be in one of the labeled categories. This represents a source of new topic categories as
well as place for less important messages to end up.

From Table 1, we see very small error rates even relative to the military knowledge
management mission. These small numbers of errors would not be difficult for an
engineering activity to work with. Prior to utilizing a naïve Bayes classifier for re-
quirements engineering as discussed in Section 3, it would be worth investigating how
small the training set could get before the error rate was unacceptable. It is possible
that with only 10-20 blog posts labeled, acceptable classification could occur.

4.2 Experiment 2 – Relevance

In the second experiment, we trained the topic modeling engine from PAL and four
other algorithms on one year of reading, writing, and book-marking habits of 6 users
of the SKIWeb system. Five different recommendation engines, developed from the
five algorithms, recommend thirty events from a new set of events the user should
read. We then asked the users to judge whether the events recommended were rele-
vant to them or not. The results, shown in Table 2 below, demonstrated that all of the
techniques used for topic modeling were successful with some users, but other users
were more difficult to characterize.

Review of these users showed that as expected that the topic modeling was able to
recommend for active bloggers more easily than those who merely read. The hypothe-
sis (which still needs to be checked) is that active participants focus their authorship
in areas that are of more direct interest to them, but readers will read a wide variety of
information. Most classifier based methods beat the topic modeling in this batch mode
experiment, which put the topic modeling at a disadvantage due to its need for greater
signal (expertise model from the questions and answers along with explicit feedback).

192 D.S. Lange

In future experiments we will hope to measure the difference in performance provided
by the preferred environment for topic modeling which is the same environment for
the requirements engineering blogs, and active discussion with dynamic social net-
work. iLink is already being used in dynamic environments with user proclaimed
success [9], but without metrics available.

The “Precision at n” measure is a standard used in information retrieval but can be
problematic in recommender applications [8]. We provided a list of 30 recommendations
and therefore measured “Precision at 30”. SKIPAL actually produces a list of all events
ordered in relevance order, but for the purposes of this experiment we cut the recommen-
dations off at 30 so that users would only have to review 150 events each. It is possible
that there were fewer than 30 relevant events to provide, in which case the algorithms
were being penalized by the user interface. It is for this reason that it is only useful as a
comparison among the algorithms and not as an absolute indication of value.

Fig. 6. Precision at 30 for Six Users of SKIWeb

Precision is defined as the number of relevant items in the list of 30, divided by the
number of items recommended (i.e., 30). Recall (another information retrieval stan-
dard metric) was not possible to compute without asking the users to review all possi-
ble events from every day of the test, which was not feasible.

The precision measure indicates how well the recommender is doing in providing
relevant recommendations within the list of 30 events relative to other methods pro-
viding the same number.

4.3 Experiment 3 – Relevance Based on ‘Read-By’ Data

In a third experiment, one year of SKIWeb data was again used to train five recom-
mendation engine algorithms. These included:

 Text Classification and Machine Learning Support for Requirements Analysis 193

• Topic modeling from iLink
• Naïve Bayes (labeld as TWCNB for transformed weight-normalized com-

pliment naïve Bayes).
• Maximum Entropy Modeling (another classification approach)
• Event Buddies (using TWCNB to correlate events and users, then recom-

mend events that most closely related users read)
• Cluster Buddies (events are clustered into word groups and users are associ-

ated with word groups based on events read, again using TWCNB).

This time, 50 users were selected whose reading habits were closest to the median
number of events read, but without exceeding the median number. This time, two
weeks of data was introduced one day at a time, and the recommendation engines were
asked to provide a recommendation for the users’ daily read. We then compared this to
what the users had actually read assuming that it would be an indication of relevance.
Again, signals for training included events read, authored, blogged comments, and
bookmarks. The purpose was to help select an algorithm for use, so the metrics used
again were mostly comparative. However, the following graphs show that all of the
algorithms were successful at predicting what a user would read, and some signifi-
cantly so. The metric used was a ratio of the area under a ROC curve [8] to the area
under a ROC curve that represents a perfect ordering of the recommendations, where
all relevant (read) events are above all irrelevant (unread) events. The results for each
algorithm are represented by Gaussian distributions and graphed in Figure 7 below.

Fig. 7. Experiment Three Results

194 D.S. Lange

Again, the limitation of this experiment was its “batch” nature favoring classifiers
which are more easily designed for such use. The topic modeling was therefore at a
disadvantage as it requires interactive use to get all required signals.

4.4 Conclusions from Experimental Results as Related to Case Study

Classifiers and recommendation systems may well have a contribution to make if
blogs are used to facilitate the discussion of system requirements. Classifiers can help
find the entries that are relevant to particular requirements or issues. Likewise, rec-
ommendation systems that use topic modeling can identify the key stakeholders for
which a requirement is important and allow the analysis to be focused on the needs of
these stakeholders. The stakeholders are served through allowing them to focus on
blog discussions relevant to their interests.

5 Conclusions

The problem posed by the case study is that we often would like to elicit requirements
from a large and diverse population of stakeholders. Our current methods and tools
require us to focus on a small number of stakeholder representatives. The case study
by suggesting the use of blogs in defining requirements for a large enterprise like
airport safety hints at something beyond 13 posts by 3 users.

SKIWeb and other military knowledge management capabilities serve exactly this
same sort of population. Large commands themselves consist of hundreds or thou-
sands of people, working in a variety of specialties. Distributed collaboration tools
network many of these large commands together along with many smaller ones.
SKIWeb was created out of a recognition that in a networked world, information and
knowledge management was not a hierarchical process as was formerly the case in the
military. Execution still has hierarchical components, but information doesn’t need to
be bound to such a structure.

Requirements elicitation and engineering in a large distributed enterprise doesn’t
differ very much from the primary activity of large military commands, deciding what
actions need to be taken. Many staff members are acting as analysts. They collect infor-
mation, develop a model of the environment, and suggest what actions are required.

Therefore, there are two aspects of these organizations that are related to the posed
problem. First, we need capabilities that improve the ability of large numbers of peo-
ple to communicate and share knowledge. Second, we need tools that allow analysts
to ask questions or propose hypotheses, and get responses back in a way that doesn’t
overwhelm them.

The case study starts with an issue being raised and responses being proffered.
SKIPAL will use iLink to perform this task. In using the statistical models of exper-
tise and topic interests, users who raise issues have the ability to ensure that those
with the greatest likelihood of responding authoritatively will see the questions. SKI-
PAL will evolve a model of who the experts are on any topic raised. Similarly, in a
large enterprise, engineers need the ability to understand the real social network and
find the true authorities. In a large diverse enterprise, limiting elicitation to a small
number of proffered experts may yield poor results.

 Text Classification and Machine Learning Support for Requirements Analysis 195

When we include the entire enterprise in on all topics, users need tools to allow
them to filter what they read and focus on what matters to them. This is vital in the
command and control environment of U.S. Strategic Command and the capability to
focus on relevant information will help staff members avoid being overwhelmed with
information. Similarly, if we want feedback from experts all over TSA, the FAA, and
individual airports, then we must give them the tools to focus in on the issues that are
important to them and that they feel they have something to contribute to. The topic
models within SKIPAL perform this task, and the initial experiments were discussed
in Section 4. User feedback on the performance of these tools now fielded are allow-
ing the algorithms to be tuned and improved.

Text classifiers are useful in the SKIPAL environment to pick out events of par-
ticular interest. In the requirements engineering domain, classifiers can group posts by
issue and allow requirements engineers to see all the arguments for an issue grouped
together. By seeing what falls out of the classifiers into an “other” bin, new issues can
be identified.

The machine learning tools applicable to large distributed command and control
enterprises appear to offer many benefits to requirements engineering if we wish to
elicit information from a large diverse population of stakeholders using network
communication tools like blogs.

References

1. Seymour, G., Cowen, M.: A Review of Team Collaboration Tools Used in the Military and
Government, http://www.onr.navy.mil/sci_tech/34/341/docs/

 cki_review_team_collaboration.doc
2. Boland, R.: Network Centricity Requires More than Circuits and Wires. Signal 61(1),

83–100 (2006)
3. Lange, D.: Boot Camp for Cognitive Systems: A Model for Preparing Systems with Ma-

chine Learning For Deployment. Ph.D. Dissertation, Naval Postgraduate School, Mon-
terey, CA (2007)

4. Conley, K., Carpenter, J.: Towel: Towards an Intelligent To-Do List. Technical Report,
SRI International, Menlo Park, CA (2006)

5. Myers, K.: Building an Intelligent Personal Assistant. AAAI, Menlo Park (2006) (Invited
Talk)

6. Goguen, P., Luqi: Formal Methods: Promises and Problems. IEEE Software 14(1), 73–85
(1997)

7. Luqi, Kordon, F.: Advances in Requirements Engineering: Bridging the Gap between
Stakeholders’ Needs and Formal Designs. In: Paech, B., Martell, C. (eds.) Monterey
Workshop 2007. LNCS, vol. 5320, pp. 15–24. Springer, Heidelberg (2008)

8. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating Collaborative Filtering Re-
commender Systems. Trans. Information Systems 22(1), 5–53 (2004)

9. Davitz, J., Yu, J., Basu, S., Gutelius, D., Harris, A.: iLink: Search and Routing in Social
Networks. In: 13th International Conference on Knowledge Discovery and Data Mining,
pp. 931–940. ACM, New York (2007)

10. Segaran, T.: Programming Collective Intelligence. O’Reilly, Sebastopol (2007)

B. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 196–213, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Profiling and Tracing Stakeholder Needs

Pete Sawyer, Ricardo Gacitua, and Andrew Stone

Lancaster University, Lancaster, UK. LA1 4WA
{sawyer,gacitur1}@comp.lancs.ac.uk, a.stone1@lancs.ac.uk

Abstract. The first stage in transitioning from stakeholders’ needs to formal de-
signs is the synthesis of user requirements from information elicited from the
stakeholders. In this paper we show how shallow natural language techniques can
be used to assist analysis of the elicited information and so inform the synthesis of
the user requirements. We also show how related techniques can be used for the
subsequent management of requirements and even help detect the absence of re-
quirements’ motivation by identifying unprovenanced requirements.

Keywords: Requirements engineering, natural language processing, informa-
tion retrieval, tacit knowledge.

1 Introduction

Bidirectional traceability that spans implementation through design to the specifica-
tion of requirements, and even all the way back to the origin of the requirements in
the characteristics of the application domain is needed for the effective management
of complex software projects and products [1]. The need for traceability is in part a
result of the very wide difference that exists between the formality of program code
and the informality with which stakeholders typically express their requirements.
Much of software engineering has concerned itself with closing this gap by:

• raising the levels of abstraction with which software engineers can reason about a
system, and allowing selectivity about the level of detail and the various behav-
ioural and structural properties with which the engineers need to concern them-
selves;

• formalizing the expression of requirements so that software engineers can more
easily reason about them and verify their attributes, such as completeness, consis-
tency and so on.

The results of these two strands of work is manifested in the myriad of formal, semi-
formal, structured, and other notations that have emerged over the last thirty years.
Despite these developments, it is significant that representations of requirements are
still predominantly informal.

The fact that “the majority of requirements are given in natural language, either
written or orally expressed” [2] is still true is a fundamental inhibitor to requirements’
early formalization. Natural language is usefully expressive and available to almost
everyone, regardless of their background. As a medium for precise description, how-
ever, it has serious deficiencies. For example, in a language such as English, it is easy

 Profiling and Tracing Stakeholder Needs 197

to unwittingly introduce ambiguity, and complex concepts are hard to express suc-
cinctly. Moreover, the rules of grammar are complex, contain many exceptions and are
poorly representative of vernacular usage. Considerable skill is needed by a require-
ments analyst to extract the key information from stakeholders’ expressions of re-
quirements, synthesize requirements that specify the best solution to the underlying
business problem given the different stakeholders’ needs and the available resources,
and to do so concisely and precisely. This synthesis is far more than a linguistic trans-
formation. It involves developing an understanding of complex and often conflicting
pieces of information expressed in a medium (natural language) that does not support
conceptual reasoning in the way that formal languages do.

Fig. 1. Upstream vs. Downstream Requirements

The challenges posed by natural language have not deterred researchers in the field
of natural language processing (NLP). Inevitably, a number of researchers in require-
ments engineering (RE) have investigated the application of techniques developed for
NLP and the related field of information retrieval (IR) to natural language require-
ments. This work has achieved some successes, but many of the successes have been
focused on processing the products of the RE process. By RE products we mean ana-
lyst-synthesized requirements or use cases. In Fig. 1, RE products are represented by
the user requirements and the downstream artifacts; derived requirements, models,
architecture, design, test cases and ultimately code. Upstream of the user requirements
are the stakeholders, documents and other sources of requirements and contextualiz-
ing domain knowledge, some more tangible than others.

Downstream requirements artifacts can be relatively tractable to a range of NLP
techniques if they are authored to conform to good requirements expression practice,
or even conform to a controlled subset of (for example) English. Arguably, the most
successful applications of NLP to downstream requirements have been the detecting
requirements’ defects or the inference of relationships between requirements. Despite
these successes, the level of deep understanding of semantics and pragmatics needed

198 P. Sawyer, R. Gacitua, and A. Stone

to automate the tasks performed by a requirements analyst continue to far exceed the
capabilities of language engineering techniques.

The linguistic problems are even more marked in the artifacts upstream from the
user requirements. While the analyst-synthesized requirements may conform to good
requirements expression practice, the information sources from which the require-
ments are synthesized are always messy and unstructured. Despite these problems,
NLP techniques can provide assistance to analysts provided the limits to what is
achievable are clearly understood.

In this paper we are concerned with problems posed by upstream requirements
artifacts and the potential for NLP and IR techniques for assisting the analyst. The
contribution of work is to posit how the use of shallow NLP techniques may aid the
analyst in the early stages of transitioning from stakeholders’ needs to formal designs;
the synthesis of user requirements that are informed by information elicited from the
stakeholders and the subsequent management of this information. We also consider
the conundrum posed by missing or suppressed information and the perhaps para-
doxical potential for shallow techniques to detect the absence of information.

The remainder of the paper is structured as follows. In section two we describe our
approach for concept identification which is a key, early activity of the requirements
synthesis process. We illustrate this strand of our work with an analysis of the airport
security case study from this volume of proceedings [3]. Section three describes the
use of IR techniques for tracing between requirements and their sources and, again,
applies the techniques we have developed to analysis of the airport security case
study. In section four we discuss the problems of unprovenanced requirements and
show how the same IR techniques used for upstream tracing can be useful for infer-
ring the presence of tacit knowledge. Section five surveys related work and section six
concludes the paper.

2 Assisting the Synthesis of User Requirements

Among the most challenging applications of NLP in RE have been problems where
the language used is uncontrolled [4]. Uncontrolled language is characteristic of the
upstream phases of RE [5] where the stakeholders not only hold different perspectives
on the problem domain but express their needs in ways that often fail to conform to
conventions of language use. The three bloggers in the airport security case study
illustrate this well. Even ignoring the divergence of semantics and pragmatics of their
perspectives on the problem, a number of lexical and syntactic characteristics of the
text pose real natural language processing problems, such as idioms (“come on!”),
implicit context (“we can deal with it.”) and grammatical errors and typos (“We have
to ban on ..”, “Channel No. 5”).

The characteristics illustrated by the airport security blog illustrate why the auto-
matic synthesis of user requirements is way beyond the current state-of-the-art. How-
ever, NLP techniques exist that are relatively tolerant of some of the linguistic defects
illustrated by the airport security blog. We refer to these as “shallow” NLP tech-
niques. Such techniques are essentially lexical and morphological so are incapable
of inferring required properties of an airport security system. Rather, they provide
data about text that is about airport security, from which a human analyst may infer

 Profiling and Tracing Stakeholder Needs 199

properties of an airport security system. We describe such techniques as shallow be-
cause they are not based on models of language structure but are “characterized by
the use of analytic techniques which depend on statistical properties of language
structure rather than reliance on absolute logical rules” [6]. Because of shallow tech-
niques’ basis in statistics, they work best when there is a large corpus of text from
which to infer properties.

A requirements analyst has to develop an understanding of the problem domain. A
fundamental component of domain understanding is identification of the domain
concepts. A number of researchers have investigated the identification of domain
concepts by analysis of the text using, for example, frequency profiling [7] and lexical
affinities [8]. Such work can serve to help identify entities in the problem domain and
their relationships, reveal key terms and populate glossaries. Ultimately, they may
be organized ontologically, perhaps in structural and behavioral models. In our work
[4, 9, 10], we have investigated the combination of a number of statistical and corpus-
based NLP techniques for concept identification. The techniques we have experi-
mented with include part-of-speech (PoS) and semantic (or word-sense) tagging [11],
lemmatization, frequency profiling, and collocation analysis (which is the same as
lexical affinity identification).

The columns A and B in Table 1 show the most significant results of applying PoS
tagging, lemmatization and frequency profiling to the airport security blog. The PoS
tags assigned by our toolset’s tagger (CLAWS [12]) are needed by several other types
of processing. Although the CLAWS tagset uses over 160 different parts of speech,
for simplicity in the remainder of this paper we refer only to basic parts of speech
(noun, verb, adjective, etc.).

The PoS tags are used by the lemmatizer to collapse words with the same PoS to a
base form called a lemma that, in contrast to the action taken by the more commonly

Table 1. The 10 Most Over-Represented Words in the Blog and Domain Corpus. Column A
shows the 10 most over-represented lemmatized terms in the blog where each term can have any
part of speech. Column B shows the 10 most over-represented verbs in the blog. Columns C and
D show the same as columns A and B respectively, but apply to the blog combined with a corpus
of documents on airport security. The most over-represented term is at the top of each column.

Blog only Blog and domain corpus
A: All terms B: Verbs only C: All terms D: Verbs only
screener screen airport access
security ban security screen
airport backscatter passenger check
oxidizer federalize capta profile
screening spend surveillance identify
faa miss flight travel
airline retrain luggage selfdiscipline
cutter foil traveler carry
liquid deter screening capture
dozen renegotiate liquid pack

200 P. Sawyer, R. Gacitua, and A. Stone

used technique of stemming, takes account of words’ parts of speech. Hence, while a
stemmer would have reduced the noun “screeners” and the verb “screens” to a com-
mon stem “screen”, the lemmatizer distinguishes between them because they have
different PoS, reducing them to the lemmas “screener” and “screen”, respectively.
The benefits of stemming versus lemmatization are arguable but for concept identifi-
cation it helps to distinguish (for example) the role or actor signified by “screener”
from the action or candidate use case “screen”.

Following lemmatization, we performed frequency profiling on the lemmatized
words. Frequency profiling can be done in a number of ways. The simplest is to sim-
ply rank words in order of their frequency of occurrence in a document. However, a
more telling result can be achieved by comparing the frequency of occurrence of a
word in a document against the frequency of occurrence in a normative corpus. With
corpus-based frequency profiling, concepts that have particular significance to a do-
main can be revealed because the terms that signify them tend to appear to be over-
represented. We compared the frequency of occurrence of each lemmatized word in
the blog against the frequency of occurrence predicted by the British National Corpus
(BNC). The BNC is one of the largest corpora of English text that has been compiled
by linguists in order to understand the language. It contains text from a number of
genres, both formal and informal, written and spoken, so is broadly representative of
British English as a modern, living language. Its utility is in the fact that, as a norma-
tive corpus, it forms a benchmark against which other documents of English text can
be compared. This is nicely illustrated by “oxidizer”. Although oxidizer appears only
twice (once in singular and once in plural form) in the 603 word blog, twice is still
significantly more frequently than predicted by its rate of occurrence in the BNC.

The lemmatized words in column A are ranked according to how over-represented
they are in the blog compared to their appearance in the BNC. Only the ten most over-
represented words are shown, ranked from top to bottom. Hence, “screener” is the
most over-represented word, strongly suggesting that it represents a significant con-
cept within the bloggers’ problem domain. In general, the further the analyst looks
down the list, the less over-represented the words become. In [4], we show that the
likelihood of a word in a frequency list representing a significant domain concept
(that is, the precision) decays as the analyst traverses the list from top to bottom. Con-
versely, the likelihood of identifying all the significant domain concepts present in the
list (that is, the recall) increases as the list is traversed, but at a decaying rate. This
means that the analyst typically experiences the law of diminishing returns the further
from the top of the list they go in search of domain concepts. How far down the list
they should search is dependent upon the size of the list and the extent to which the
terms deviate from the predicted frequency of occurrence. The density of potential
domain concepts in the ten terms listed in column A in Table 1 suggests that even for
such a short document, it would repay looking a bit further down the list.

It is interesting to note that each word in column A in Table 1 has been tagged as
a noun. It appears to be a common feature of frequency profiling that nouns domi-
nate the top of the ranked list. We hypothesize that this is a linguistic quirk that
serves to distort the true significance of words’ frequency of occurrence. To over-
come this problem it is possible to filter the list on PoS. In the column B in Table 1,
we have filtered the frequency list to show only the verbs. Potentially genuine goals

 Profiling and Tracing Stakeholder Needs 201

(“foil”, “deter”) and use cases (“screen”) are in evidence. The density of potential
concepts within the verb-filtered frequency list, and therefore the precision, is fairly
low, however.

Note that all NLP techniques are fallible so 100% recall or precision is almost
never achieved. This fallibility is illustrated by Table 1 in which the elided words
represent errors. “Capta” and “selfdiscipline” are formatting errors but “screening”
and “backscatter” are errors produced by the PoS tagger. Consider “Screening” which
occurs four times:

• once as a verb: “…you use it dozens of times daily screening everything from
squeeze cheese…”)

• three times as an adjective: “screening system”, “screening devices” and “screen-
ing rules”.

However, CLAWS has tagged “screening” as a noun in each case. This has in turn
confused the lemmatizer, which should have converted the verb occurrence into the
lemma “screen”, perhaps promoting the ranking of “screen” up the frequency list.

Fig. 2. Keyword in Context Viewer in OntoLancs ([9, 10])

202 P. Sawyer, R. Gacitua, and A. Stone

A more subtle source of errors derives from the fact that corpus-based NLP tech-
niques tend to work best when the volume of text to be processed is sufficient to yield
results that are not distorting. This is again well illustrated by “oxidizer”, ranked fourth
in column A. The fact that a single blogger mentioned the term twice does not per se
mean that it represents a significant concept within the bloggers’ universe of discourse.
That it might be significant can only be determined by a human analyst. To assist the
analyst’s decision-making keyword in context (KWIC) tools can be provided to reveal
a word’s occurrences in the text. A KWIC tool is illustrated in Fig. 2 in which the two
occurrences of “oxidizer” are revealed by selecting the word in the frequency list.

Like columns A and B, columns C and D in Table 1 are unfiltered and verb-filtered
frequency lists. C and D are frequency lists constructed from a small corpus of docu-
ments containing approximately 8000 words. This corpus was compiled from a mix-
ture of press reports about airport security and advice on security published on travel
websites, as well as from the text of the blog. We cannot claim that the corpus is truly
representative of the domain. However, it is interesting to compare columns A and C,
and B and D to help understand the focus of the blog within the general domain of
airport security. If we had more confidence in the relevance and degree of consensus
represented by our airport security corpus, we could use the results of the analysis as
the starting point for the construction of a domain ontology that could be used for the
reuse of knowledge across airport security applications. Given the degree of uncer-
tainty over the veracity of our corpus, the most we can claim in this instance is that it
reveals some of the general context of the bloggers’ conversation.

Table 2. The Most Significant Lexical Affinities with the Top-Ranked Words in the Blog and
Domain Corpus.The relative strength of each Seed word/Collocated word pair is depicted by its
position in the table, with Luggage/Hand being the strongest.

Seed word Collocated word
Luggage Hand Security Heathrow
Luggage Carry-on Passenger Data
Passenger Screening Security Current
Security Department Luggage Check
Security Aviation Security Extra
Screening Passenger Security Air
Luggage Check-in Passenger Airline
Security Transportation Luggage Items
Security Transport Security Service
Luggage Check Security Canada
Screening Profiling Airport Police
Screening Security Security Screening
Security Safety Screening System
Security Canadian Airports Security
Security Private Passenger Airport
Airport International Screening Airport
Surveillance Nature Security Baggage
Capta Biometric Security Item

 Profiling and Tracing Stakeholder Needs 203

In our earlier work [4], we elaborated on the use of statistical techniques for ana-
lyzing elicited requirements information. We analyzed the use of corpus-based fre-
quency profiling, filtering on part-of-speech and on semantic class, and the use of
lexical affinities. We concluded that frequency profiling yields the best performance
of any individual technique. However, while generally performing relatively poorly
when used in isolation, the other techniques tended to complement frequency profil-
ing. Hence, for example, not all of the significant concepts present in the corpus of
domain documents are likely to be so over-represented as to appear near the top of the
ranked frequency list. The further down the list they are, the more likely they are to be
overlooked by the analyst. However, at least some of these unidentified concepts are
likely to co-occur with the concepts near the top of the frequency list. If they co-occur
sufficiently often, they will show up as lexical affinities.

Table 2 illustrates this by showing lexical affinities with the ten most highly ranked
words in the frequency list of the blog plus the domain corpus. A significant colloca-
tion is defined by Oakes [6] as "the probability of one lexical item co-occurring with
another word or phrase within a specified linear distance or span being greater than
might be expected from pure chance.". Table 2 is ordered with the most statistically
significant collocations at the top. In a word span of one, collocations represent adja-
cencies which may indicate multi-word terms such as “boarding pass”. Non-adjacent
collocations (word span > 1) may indicate different domain concepts that participate
in some relationship. The lexical affinities in Table 2 are ranked in order of signifi-
cance, using a word span of 5. Many of the lexical affinities come from adjacencies.
Hence, the list shows compound terms such as “hand luggage” and “carry-on lug-
gage”. However, it also shows non-adjacencies such as “department of homeland
security”.

We have experimented with other shallow NLP techniques that also offer a useful
complement to the techniques described or another way of viewing the text. Semantic
taggers provide a shallow form of semantic analysis, sometimes called word-sense
resolution, that can be used to classify words or groups of words according to a set of
defined semantic categories. As with PoS tags, the analyst can use semantic tags to
filter information and infer the meaning of phrases and passages in which they occur.
A semantic tagset is derived from a taxonomy of semantic categories. Perhaps the best
known word-sense taxonomy is WordNet [13] although our tools use a tagset derived
from McArthur’s classification [14]. For example, semantic tagging could have been
used to collect together synonyms of “luggage” to reveal “baggage” and “bag”. Had
we used the underlying semantic classification of luggage/baggage/bag as the seed for
lexical affinity analysis instead of the actual term, collocation analysis would have
revealed “transparent bag” as a significant compound term. This would have reflected
the fact that our domain corpus was compiled at a time when passengers were being
required to place various items of hand luggage in transparent plastic bags.

The discussion above has stressed combinations of shallow NLP techniques. In our
most recent work [9, 10], we have developed a tool, called OntoLancs, for investigat-
ing how best to combine individual techniques as ensembles. OntoLancs provides a
protocol that enables NLP techniques to be treated as plug-ins. Once integrated, dif-
ferent techniques can be combined using a graphical language (Fig. 3). OntoLancs
also provides support for organizing the discovered concepts into a domain ontology
and encoded using the OWL ontology language. If a domain ontology already exists,

204 P. Sawyer, R. Gacitua, and A. Stone

Fig. 3. Defining NLP Technique Ensembles with OntoLancs

the results of applying NLP techniques can be compared against it and the techniques’
performance can be benchmarked. We are using this feature to evaluate the relative
performance of different ensembles of NLP techniques in order to guide their applica-
tion in analysis problems.

NLP techniques will never be capable of automating the derivation of require-
ments. Despite this, they have a role in assisting the human analyst’s task of making
sense of the myriad sources of information needed to inform the synthesis of user
requirements. Whether NLP-assisted or not, information can be lost during the syn-
thesis process, particularly when that information never existed in explicit form. The
next section examines the role that shallow NLP techniques can play in recovering
this lost information.

3 Upstream Trace Recovery

The process of user requirements synthesis is the first step in transitioning from the
informal to the formal, although it is far from a simple activity and may involve (for
example) goal modeling, scenario derivation, brainstorming and much else. Given the

 Profiling and Tracing Stakeholder Needs 205

complexity of the process, it is good practice to record the synthesized requirements’
motivation since maintenance of an explicit record helps inform trade-offs and allows
backwards tracing to the stakeholders or information sources that motivated the re-
quirements. Such upstream or pre-requirements specification tracing [1] is, for a vari-
ety of reasons, commonly neglected.

Downstream tracing or post-requirements specification tracing is also commonly
neglected, despite the ready availability of commercial requirements management
(RM) tools that directly support downstream tracing. This failure of basic RM prac-
tice has motivated several researchers to investigate automatic downstream trace
recovery. Techniques borrowed from information retrieval (IR) have been shown to
be capable of inferring relationships between requirements at different levels of elabo-
ration [15, 16, 17]. When benchmarked using sets of requirements for which a manual
trace record already existed, downstream trace recovery [16, 17] can achieve ap-
proximately 90% recall, at about 20% precision. Such a balance of recall and preci-
sion appears to be acceptable to analysts, perhaps because errors of commission are
generally easier to deal with than errors of omission. It is worth noting that the alter-
native to automatic trace recovery is manual trace recovery. Manual trace recovery is
very expensive so imperfect recall of automatic trace recovery tools at the 90% level
is easily justified. In all practical terms, the alternative to automatic trace recovery is
that no requirements traces will be recovered.

Fig. 4. An Organic Layout Algorithm Used to Display Pre-RST Derives Relationships

206 P. Sawyer, R. Gacitua, and A. Stone

In our work, we have applied IR techniques to upstream trace recovery using our
Prospect tool [18]. Prospect is designed to infer derives relationships between user
requirements and the elicited knowledge that motivated them. Our hypothesis is that a
user requirement that participates in a semantic relationship with passages of elicited
text is likely to have been motivated in some way by the information embodied by the
elicited text. Fig. 4. illustrates the results of using Prospect. It shows a cluster of sev-
eral hundred requirements and passages of text from the information elicited from the
stakeholders in a project. The scale is too small to see clearly here but requirements
and “source” passages are represented as nodes. The arcs represent inferred derives
relationships between requirements and their sources and the tight clusters reveal
where the multiplicity of relationships is high.

Automatic trace recovery tools use a measure of the lexical similarity between two
requirements statements to infer semantic relatedness. The IR technique used by Pros-
pect, LSA [19], also measures lexical similarities but is able to do more than count the
number of co-occurring words. Prospect can infer a relationship between (say) a user
requirement and passages of elicited information even when the terms used are some-
what dissimilar, provided that the terms that are used occur sufficiently commonly in
similar contexts for LSA to infer synonymy or polysemy. Hence, LSA can recognize
concepts than underlie lexical signifiers. For example, “airline” and “carrier” are often
used as synonyms of the same underlying concept, and LSA offers a mechanism to
recognize this without requiring the manual construction of a glossary.

The results of our evaluations suggest that Prospect is capable of upstream trace re-
covery with a similar level of performance to downstream trace recovery. This claim
needs to be qualified by the fact that we have been unable to identify any
public-domain manually-traced upstream requirements data sets against which to
benchmarking Prospect’s performance. In our case studies, therefore, we have had to
generate benchmarking data by manually reverse-engineering traces between user
requirements and transcripts of elicitation exercises. Such a procedure represents a
threat to the validity of estimates of prospect’s performance. It is also important to
recognize that there are other variables that have to be taken into account that are
peculiar to upstream trace recovery and which make the achievable performance con-
text-dependent. These variables include the completeness of the source text and the
granularity with which monolithic source documents are partitioned.

Although the airline security blog was not intended to illustrate trace recovery, we
used it as input to Prospect. The blog entries are not requirements, although they con-
tain information that an analyst might use to inform the synthesis of requirements.
Similarly, the corpus of domain documents is not representative of material an analyst
would elicit from stakeholders, but it might plausibly embody knowledge that an
analyst could use to develop an understanding the problem domain. Relationships
detected between blog entries and passages of corpus text do not represent the derives
relationships that Prospect was designed to identify, but other forms of relationship
might be expected to exist. Prospect detected significant semantic relationships be-
tween six of the thirteen blog entries and passages of text from the corpus. A signifi-
cant number of passages from the corpus showed a relationship with the first blog
entry:

 Profiling and Tracing Stakeholder Needs 207

“We have to ban on airplane passengers taking liquids on board in order to increase
security following the recent foiled United Kingdom terrorist plot. We are also work-
ing on technologies to screen for chemicals in liquids, backscatter, you know?”

One of the interesting things about this entry, and the blog as a whole, is that there
is no explicit rationale for why passengers should be prevented from carrying liquids
on board an airplane. However, the rationale is provided by several of the corpus
passages that Prospect linked with the blog entry, including, for example:

“Claims that terrorists were plotting to use liquid explosives suggest they under-
stood the limitations of current bomb detection methods, experts say.”

Note that the common occurrence of “liquid”/”liquids” in the blog and corpus pas-
sages suggests that the relationship was inferred from lexical similarity only. This
supports the good performance reported by techniques based purely on lexical simi-
larity, such as [15] but offers no insight into the advantages of using the more compu-
tationally-intensive LSA.

LSA’s tolerance of inconsistent vocabulary can be tested by our earlier observation
that we would expect the synonymy of “airline” and “carrier” to be recognized. The
corpus contains four passages of text that use the term “carrier” and many more that
use “airline”. Prospect identified relationships between two of the passages that used
“carrier” with passages using “airline”. That the recall was less than 100% reflects the
fact that the weight that LSA attaches to two passages of text is proportional to the
number of terms and concepts they share. A single shared concept such as that repre-
sented by “airline”/“carrier” is often insufficient in itself to show up as a strong de-
gree of relatedness. This is not a failing of LSA; the fact that two passages of text
mention either “airline” or “carrier” need not mean that they share deep semantic
meaning. An example of genuine semantic relatedness is illustrated by the following
two passages of text that Prospect correctly inferred a relationship between:

“Travelers are urged to check with airlines in advance.”
“Passengers are strongly advised to check the website of their carrier or airport be-

fore travelling.”
Note that the semantic relatedness is revealed not only by the synonyms “airline”

and “carrier”, but also by the shared term “check” and another pair of synonyms:
“traveler” and “passenger”.

Our simple experiment confirmed our hypothesis that interesting semantic relation-
ships would exist between blog entries and the corpus. In addition to offering an in-
sight into the advantages of LSA over techniques based on purely lexical similarities,
the experiment suggests that the utility of tools like Prospect might extend beyond
trace recovery to provide more general assistance for analysts. However, there is one
utility of tools such as Prospect that is revealed by performing trace recovery and
which we explore in the next section.

4 Unprovenanced Requirements

An interesting phenomenon that is commonly revealed by applying Prospect to up-
stream trace recovery is that of unprovenanced requirements. If the elicited information
exists in text form, Prospect is typically able to infer derives relationships between user

208 P. Sawyer, R. Gacitua, and A. Stone

Fig. 5. Unprovenanced Requirements Revealed by Prospect

requirements and passages of the elicited text. The strength of a relationship between a
user requirement and passages of elicited text can vary according to the lexical simi-
larities that exist between them, but with the tolerance of synonymy and polysemy that
LSA affords. In the case studies conducted so far, a minority of requirements appear to
have no relationship with the elicited text. This is illustrated in Fig. 5 in which a num-
ber of apparently unprovenanced requirements can be seen, indicated by the fact, in
contrast to the other visible requirements, that they are not connected to any passages
of source text by an inferred derives relationship.

The largest of our case studies was conducted on a live project and we were able to
interview the analysts to validate the results. Their responses showed a strong correla-
tion between requirements identified by Prospect as unprovenanced and those where
the requirements had been invented by application of the analysts’ domain knowledge.

Clearly, invention is part of the job of an analyst because they must use their
knowledge and experience to creatively add value to the needs stated by the stake-
holders. One common reason for the need for invention is that the information elicited
from the stakeholders is incomplete. Incompleteness can be due to a number of rea-
sons, but one is that the stakeholders hold information that they don’t articulate either
through deliberately withholding it or (we assume, more commonly) unconsciously
withholding it. Knowledge that is never articulated, either because it is hard to articu-
late, or is so integral to the holder’s model of the world that they don’t feel the need to
make it explicit is tacit [20, 21, 22].

A number of elicitation methods exist that help cope with tacit knowledge or con-
cealed information [23]. EasyWinWin [24], for example, is designed to identify,
refine and reach consensus on the requirements for a system over a series of steps.

 Profiling and Tracing Stakeholder Needs 209

These steps are carefully structured using prompts and the staged revelation of stake-
holders’ requirements and priorities to tease out concealed information. We hypothesize
that techniques such as LSA could enhance tool support for such methods by, for exam-
ple, tracing the evolution of stakeholders’ requirements over stages in the elicitation
process and helping highlight discontinuities that might be revealing of concealed infor-
mation or tacit knowledge. Hence, in addition to helping detect the effect of tacit
knowledge in existing requirements, LSA may be useful in drawing tacit knowledge
and concealed information out of stakeholders during requirements elicitation.

5 Related Work

For upstream requirements engineering, any NLP technique that is intolerant of devia-
tions from grammar rules and other defects will fail. Symbolic NLP techniques, which
depend on a model of the syntax and semantics of language, are too brittle when con-
fronted with the poorly-conformant language and inconsistent vocabulary that is char-
acteristic of many upstream requirements sources. Hence, while work such as [25, 26,
27, 28] make valuable contributions to downstream RE, the NLP techniques they are
based upon don’t work well upstream.

Recognizing this, Daniel Berry and collaborators [8, 29, 30, 31] have experimented
with a range of techniques to help the analyst identify domain concepts. Identifying
and classifying domain concepts imposes a high cognitive load on the analyst, par-
ticularly if the volume of text they need to analyze is high. To support upstream RE,
therefore, “… the desire is for a clerical tool that helps with the tedious, error-prone
steps of what a human elicitor does …” [31]. The challenge is to match or exceed
human analysts’ performance in recall yet achieve a level of precision in which veri-
fying the abstractions and eliminating the false positives consumes significantly less
effort than a manual analysis of the text.

Findphrases [30] and AbstFinder [31] were both based on the idea that domain
concepts would recur frequently as repeated words within the target document. In
both, a ranked list of frequently occurring words and phrases is returned. Stop words
such as conjunctions and articles act as noise and have to be filtered. In case studies,
AbstFinder out-performed human analysts for recall and achieved recall of approxi-
mately 25%. The authors argued that 25% precision was an underestimate because the
remaining 75% contained some valid domain concepts that had not been included in
the manual analysis document that was used to benchmark the performance. Precision
of 25%+ represents good performance but still risks genuine domain concepts being
overlooked in the noise. The ideas behind Findphrases and AbstFinder were refined
by Lecœuche [7] who, in parallel with our work pioneered the use of corpus-based
frequency profiling in RE.

Lexical affinities [8] represent collocations of words within text. As a stand-alone
technique, Maarek found that Lexical affinities performed somewhat worse than
AbstFinder on recall but achieved slightly better precision.

Our own early work has explored the use of a range of shallow, primarily corpus-
based, NLP techniques for domain concepts, concluding that corpus-based frequency
profiling offered the best performance [4]. One of our conclusions from this work was
that by combining frequency profiling with other, individually poorer-performing

210 P. Sawyer, R. Gacitua, and A. Stone

techniques, would help improve performance with little additional overhead. Our
recent work [9, 10] is designed to test this hypothesis.

In the discussion above, we suggested that shallow NLP techniques are primarily
useful for upstream RE. Recently however, Chantree et al. [32] have demonstrated
that such techniques may also be useful for downstream RE problems, using corpus
linguistics to identify ambiguities in requirements. Not all ambiguities in requirements
are damaging and Chantree et al. focus their work on detecting ambiguities that are
damaging; what they term nocuous ambiguities.

A different set of techniques have been found useful for identifying relationships
between requirements and between requirements and other textual artifacts. Here,
techniques developed by the IR research community for discovering document simi-
larity have proved most useful. A number of researchers [15, 16, 17] have realized
that textual requirements can be subjected to IR techniques to infer requirements
similarity in order to infer derives relationships for trace recovery. In experiments
using data sets of manually traced requirements as benchmarking data, they show that
IR-based trace-recovery tools are capable of discovering up to, and sometimes over,
90% of the downstream trace relationships with generally reasonable precision.

One of the most useful families of IR techniques for trace recovery has proven to
be that based on the vector-space model [33]. In the vector space model, each docu-
ment is represented as a vector. The number of dimensions of the space that contains
the vectors is proportional to the number of unique words in the combined vocabulary
of all documents being compared. The magnitude of each vector (i.e. each document)
in each dimension (i.e. each unique term) shows the frequency of each word in each
document. Several existing trace recovery tools, including ReqSimile [15] and
RETRO [16], use a vector space model. However, most variants of the vector space
model are unable to cope with particular challenges posed by upstream tracing. Ravi-
chandar et al. [34] conceptualize the upstream trace recovery problem in terms of
coupling and cohesion. They argue that the loose coupling and high cohesion exhib-
ited by a well-formed requirements specification is characteristically absent in the
requirements sources. Our concern here is only with a subset of the problems identi-
fied by Ravichandar et al., those that are linguistic, particularly the problems of
inconsistent vocabulary.

One solution to linguistic inconsistency is to identify the inconsistent vocabulary in
advance, so synonyms and polysemes in the text can be replaced with consistent ter-
minology before the vector space is constructed. This can be achieved by manually
constructing a thesaurus that is used to preprocess the traceable artifacts before candi-
date link generation. Thesaurus construction has been used to good effect in post-
requirements trace recovery [16] but it comes at the cost of requiring analyst effort.
This threatens the scaleability of upstream trace recovery where significant variation
is the norm.

LSA offers an alternative, computational solution to inconsistent vocabulary by us-
ing Singular Value Decomposition (SVD) to post-processes the vector space. Despite
being strictly statistical, SVD takes account of documents' vocabularies to arrange their
vectors by patterns of word usage. The effect of SVD is to reduce the effects of synon-
ymy and polysemy considerably, although it is also the computationally intensive step

 Profiling and Tracing Stakeholder Needs 211

of LSA. The extra computational cost of LSA over “vanilla” vector space model-based
techniques makes LSA an expensive solution for downstream trace recovery that ap-
pears to offer few substantial benefits. Our work has shown that its real value in RE is
to upstream trace recovery.

6 Conclusions

In [35], Kevin Ryan offered a critique of the application of natural language process-
ing techniques to requirements engineering problems. Among Ryan’s key observa-
tions was that it was both unfeasible and undesirable to automate the derivation of
requirements from natural language text. Fourteen years later, Ryan’s view still holds.
Instead, work has focused on using NLP techniques as a tool to aid the human analyst.
We argue that in the early stages of RE where the language is inevitably uncontrolled,
shallow NLP techniques hold real promise as the basis for viable analysts’ tools.

Before considering the application of NLP techniques to RE, it is crucial to under-
stand the limits to what they can achieve. The automatic derivation of requirements
from information elicited about the problem domain is unfeasible and will always
remain so. However, help for the identification of domain concepts that the analyst
can use for the manual construction of analysis models is feasible. Our research indi-
cates that it is difficult to achieve adequate performance with any individual NLP
technique. However, ensembles of techniques, combined in an appropriate way, can
achieve sufficiently high levels of performance to make them genuinely useful.

One of the reasons why the automation of the analyst’s task is unfeasible and unde-
sirable is that much of the information that the analyst needs in order to formulate
appropriate requirements is likely to be unstated. We have described how latent se-
mantic analysis, when applied to upstream trace recovery can highlight disconnects
between the formulated requirements and the information elicited from stakeholders.
It appears that this disconnect is sometimes a symptom of missing or incomplete in-
formation, which in turn can be caused by stakeholders failing to articulate their
knowledge. We believe that the ability to detect evidence of tacit knowledge is useful
in itself and may form a component in a toolset for improving how tacit knowledge is
handled within RE.

References

1. Gotel, O., Finkelstein, A.: An analysis of the requirements traceability problem. In: 1st In-
ternational Conference on Requirements Engineering (ICRE 1994), pp. 94–101. IEEE
Computer Society Press, Los Alamitos (1994)

2. http://fabrice.kordon.free.fr/Monterey2007/home.html
3. Luqi, Kordon, F.: Advances in Requirements Engineering: Bridging the Gap between

Stakeholders’ Needs and Formal Designs. In: Paech, B., Martell, C. (eds.) Monterey
Workshop 2007. LNCS, vol. 5320, pp. 15–24. Springer, Heidelberg (2008)

4. Sawyer, P., Rayson, P., Cosh, K.: Shallow Knowledge as an Aid to Deep Understanding in
Early-Phase Requirements Engineering. IEEE Trans. Software Engineering 31(11), 969–
981 (2005)

212 P. Sawyer, R. Gacitua, and A. Stone

5. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements Engi-
neering. In: 3rd IEEE International Symposium on Requirements Engineering (RE 1997),
pp. 226–235. IEEE Computer Society Press, Los Alamitos (1997)

6. Oakes, M.: Statistics for Corpus Linguistics. Edinburgh University Press, Edinburgh
(1998)

7. Lecœuche, R.: Finding comparatively important concepts between texts. In: 15th IEEE In-
ternational Conference on Automated Software Engineering (ASE 2000), pp. 55–60. IEEE
Computer Society Press, Los Alamitos (2000)

8. Maarek, Y., Berry, D.: The Use of Lexical Affinities in Requirements Extraction. In: 5th
International Workshop on Software Specifications and Design, pp. 196–202. ACM, New
York (1989)

9. Gacitua, R., Sawyer, P., Rayson, P.: A Flexible Framework to Experiment with Ontology
Learning Techniques. Knowledge-Based Systems 21(3), 192–199 (2007)

10. Gacitua, R., Sawyer, P.: Ensemble Methods for Ontology Learning - An Empirical Ex-
periment to Evaluate Combinations of Concept Acquisition Techniques. In: 7th
IEEE/ACIS International Conference on Computer and Information Science (ICIS 2008),
pp. 328–333. IEEE Computer Society Press, Los Alamitos (2008)

11. Archer, D., Rayson, P., Piao, S., McEnery, T.: Comparing the UCREL Semantic Annota-
tion Scheme with Lexicographical Taxonomies. In: 11th EURALEX International Con-
gress (Euralex 2004), pp. 817–827, Université de Bretragne Sud (2004)

12. Garside, R., Smith, N.: A Hybrid Grammatical Tagger: CLAWS4. In: Corpus Annotation:
Linguistic Information from Computer Text Corpora, pp. 102–121. Longman, London
(1997)

13. Miller, G.: WordNet: a lexical database for English. Comms. ACM. 38(11), 39–41 (1995)
14. McArther, T.: Longman Lexicon of Contemporary English. Longman, London (1981)
15. Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., Karlsson, J.: A Feasibility

Study of Automated Support for Similarity Analysis of Natural Language Requirements in
Market-Driven Development. Requirements Engineering 7(1), 20–33 (2002)

16. Huffman-Hayes, J., Dekhtyar, A., Karthikeyan Sundaram, S.: Advancing Candidate Link
Generation for Requirements Tracing: The Study of Methods. IEEE Trans. Software Engi-
neering. 32(1), 4–19 (2006)

17. Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S.: Best Practices for
Automated Traceability. IEEE Computer 40(6), 27–35 (2007)

18. Stone, A., Sawyer, P.: Identifying Tacit Knowledge-Based Requirements. IEE Proc. Soft-
ware. 153(6), 211–218 (2006)

19. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent
semantic analysis. J. Am. Soc. For Inf. Sci. 41(6), 391–407 (1990)

20. Polanyi, M.: The Tacit Dimension. Peter Smith, Gloucester, Ma (1983)
21. Nonaja, I.: A dynamic theory of organizational knowledge creation. Organization Sci-

ence 5(1), 14–37 (1994)
22. Busch, P., Richards, D., Dampney, C.: The graphical interpretation of plausible tacit

knowledge flows. In: Asia-Pacific symposium on Information visualization (APVis 2003),
pp. 37–46. Australian Computer Society (2003)

23. Collins, H.: What is tacit knowledge. In: The practice turn in contemporary theory, pp.
115–128. Routledge, London (2001)

24. Grünbacher, P., Briggs, R.: Surfacing Tacit Knowledge in Requirements Negotiation: Ex-
periences using EasyWinWin. In: 34th Hawaii International Conference on System Sci-
ences, pp. 8–15. IEEE Computer Society Press, Los Alamitos (2001)

 Profiling and Tracing Stakeholder Needs 213

25. Fabrini, F., Fusani, M., Gnesi, S., Lami, G.: An automatic quality evaluation for natural
language requirements. In: 7th International Workshop on Requirements Engineering:
Foundations for Software Quality (REFSQ 2001), Essener Informatik Beiträge, Essen,
Germany (2001)

26. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Applications of linguistic techniques for
use case analysis. Requirements Engineering 8(9), 161–170 (2003)

27. Mich, L., Mylopoulos, J., Zeni, N.: Improving the quality of conceptual models with NLP
tools: an experiment. Technical Report DIT-02-0047, University of Trento (2002)

28. Garigliano, R., Morgan, R., Smith, M.: The LOLITA system as a contents scanning tool.
In: 13th International Conference on Artificial Intelligence, Expert Systems and Natural
Language Processing, Avignon, France (1994)

29. Berry, D., Yavne, N., Yavne, M.: Application of Program Design Language Tools to Ab-
bott’s method of Program Design by Informal Natural Language Descriptions. J. Systems
and Software. 7(3), 221–247 (1987)

30. Aguilera, C., Berry, D.: The Use of a Repeated Phrase Finder in Requirements Extraction.
J. Systems and Software. 13(9), 209–230 (1990)

31. Goldin, L., Berry, D.: AbstFinder, A Prototype Natural Language Text Abstraction Finder
for Use in Requirements Elicitation. Automated Software Engineering 4(4), 375–412
(1997)

32. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying Nocuous Ambiguities in
Natural Language Requirements. In: 14th IEEE International Conference on Requirements
Engineering (RE 2006), pp. 56–65. IEEE Computer Society Press, Los Alamitos (2006)

33. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Comms.
ACM. 18(11), 613–622 (1975)

34. Ravichandar, R., Arthur, J., Pérez-Quiñones, M.: Pre-Requirement Specification Traceabil-
ity: Bridging the Complexity Gap through Capabilities. In: International Symposium on
Grand Challenges in Traceability, TEFSE/GCT 2007 (2007)

35. Ryan, K.: The Role of Natural Language in Requirements Engineering. In: 1st IEEE Inter-
national Symposium on Requirements Engineering (RE 2003), pp. 240–242. IEEE Com-
puter Society Press, Los Alamitos (1993)

Author Index

Adams, Paige 125
Aschauer, Thomas 25

Bastani, Farokh B. 43
Berry, Daniel M. 1, 103
Berzins, Valdis 125

Carver, Doris L. 85
Clarke, Lori A. 10

Dauenhauer, Gerd 25
Derler, Patricia 25
Dinesh, Nikhil 147

Feather, Martin S. 13
Fu, Jicheng 43

Gacitua, Ricardo 196
Goedicke, Michael 62

Herrmann, Thomas 62
Hoss, Allyson M. 85

Joshi, Aravind K. 8, 147

Kof, Leonid 161
Kordon, Fabrice 15

Lange, Douglas S. 182
Lee, Insup 147
Luqi 15, 125

Martell, Craig 125
Medvidovic, Nenad 103

Popescu, Daniel 103
Pree, Wolfgang 25

Rugaber, Spencer 103

Sawyer, Pete 196
Sokolsky, Oleg 147
Steindl, Christoph 25
Stone, Andrew 196

Yen, I-Ling 43

	Title Page
	Preface
	Organization
	Table of Contents
	Part I: Abstracts
	Ambiguity in Natural Language Requirements Documents (Extended Abstract)
	Introduction
	Natural Language Is Key in Requirements Engineering
	Avoiding or Detecting Ambiguities
	Taxonomy and Defintions of Ambiguity
	Tools
	Conclusion
	References

	Towards Discourse Meaning
	References

	Getting the Details Right
	Overview
	References

	Defect Detection and Prevention (DDP)
	References

	Part II: Papers
	Advances in Requirements Engineering: Bridging the Gap between Stakeholders’ Needs and Formal Designs
	Introduction
	FocusAreas
	Workshop Case Study
	Synthesis of Workshop Discussions
	Conclusion
	References

	Innovative Requirements Engineering Techniques
	Could an Agile Requirements Analysis Be Automated?—Lessons Learned from the Successful Overhauling of an Industrial Automation System
	Introduction
	The Domain of Test Automation Systems
	Problems of the Current System

	Project Setup
	Initial Requirements
	Project Team and Location

	Prototyping-Based, Agile Requirement Analysis
	Phase I: Paper Prototyping (September 2006 – February 2007)
	Phase II: Working Prototype Based on a Domain-Specific Language (March 2007 – September 2007)
	Decompression Phase III (September 2007 – February 2008)
	From Research Prototype to Product (Starting February 2008)

	Case Study: Understanding the Versioning Requirement
	Limits of Automated Requirements Analysis
	Could Automated Support for Requirements Analysis Have Been Beneficial?

	Conclusion
	References

	Model-Driven Prototyping Based Requirements Elicitation
	Introduction
	Overview
	Rapid Program Synthesis
	MDA
	AI Planning and Component-Based Synthesis
	The Integration of MDA and AI Planning and Component-Based Synthesis
	Analysis

	Requirements Elicitation Via Prototyping
	Discussion
	Example

	Conclusions
	References

	A Case for ViewPoints and Documents
	Introduction
	Expressing Ambiguity and Imprecision Using ViewPoints
	Stating Ambiguous and Imprecise Specification Information: The SeeMe – Notation
	Comparison of SeeMe Specifications
	Comparison and Transformation Steps
	Comparison of Important SeeMe Fragments Regarding Ambiguity and Imprecision
	How to Deal with the Differences

	Assessment and Related Work
	Conclusions
	References

	Towards Combining Ontologies and Model Weaving for the Evolution of Requirements Models
	Introduction
	Software Evolution Challenges for Changing Environments
	Ontologies
	Representing Design Knowledge
	Representing Domain Knowledge

	Model Weaving
	Combining Model Weaving and Ontologies
	Related Research
	Conclusion
	References

	Reducing Ambiguities in Requirements Specifications Via Automatically Created Object-Oriented Models
	Introduction
	Related Work
	Our Approach
	Constraining Grammar
	Natural Language Parsing
	Transformation Rules
	Domain-Specific Terms
	Diagramming OOAMs
	Interpretation of OOAM
	Limitations of Method

	Studies
	Elevator Case Study
	DST Detection Quality
	MontereyWorkshop Airport Security Case Study

	Discussion and Conclusion
	Future Work

	References

	Innovative Applications of Natural-Language Processing Techniques
	Innovations in Natural Language Document Processing for Requirements Engineering
	Introduction
	Challenges of NLP for Requirements Engineering
	Why All Is Not Yet Lost
	Overview

	A Selective History of the Relationship between RE and NLP
	Summary of Recent Trends in Natural Language Processing
	NLP in the Context of RE
	How NLP Can Be Improved in the Context of RE
	Conclusions
	References

	Logic-Based Regulatory Conformance Checking
	Introduction
	The Problem of References to Other Laws
	Examples
	Distribution of Lexical Categories

	A Logic That Allows References between Laws
	NLP as an Aid in Formalizing Regulation
	Translating Regulatory Sentences to Logic
	Annotating Sentences with ASTs
	Associating the Leaves of ASTs with Logic
	Related Work

	Conclusions and Future Work
	References

	On the Identification of Goals in Stakeholders’ Dialogs
	Introduction
	Case Study
	Goal-Oriented Requirements Engineering
	Case Study: Manual Goal Identification
	Natural Language Processing in Requirements Engineering
	Lexical Approaches: Analyzing the Document Vocabulary
	Syntactic Approaches: Identifying Terms and Relations
	Interpreting Sentences: Semantic Approaches to Text Analysis
	Logic to Capture Pragmatics
	Applicability of Different Kinds of Analysis to Goal Identification

	Case Study, Goal Identification by Means of Natural Language Processing
	Evaluation of the Rule Application
	Possible Implementation

	Summary
	References

	Text Classification and Machine Learning Support for Requirements Analysis Using Blogs
	Introduction
	PAL Blogs
	Learning on the Publishing Side
	Learning on the Subscription Side
	Models of Expertise

	Applications for Requirements Engineering
	Text Classifiers
	Topic Model Filtering
	Social Network Analysis and Expertise Modeling
	Task Learning

	Results from Experiments with Blogs
	Experiment 1 – Performance of the Classifier
	Experiment 2 – Relevance
	Experiment 3 – Relevance Based on ‘Read-By’ Data
	Conclusions from Experimental Results as Related to Case Study

	Conclusions
	References

	Profiling and Tracing Stakeholder Needs
	Introduction
	Assisting the Synthesis of User Requirements
	Upstream Trace Recovery
	Unprovenanced Requirements
	Related Work
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

